Runaway Transition in Irreversible Polymer Condensation with cyclisation (2024)

thanks: joint first authorthanks: joint first authorthanks: corresponding author, davide.michieletto@ed.ac.uk

Maria PanoukidouSchool of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK  Simon WeirSchool of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK  Valerio SorichettiInstitute of Science and Technology Austria, 3400 Klosterneuburg, AustriaLaboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Saclay, F-91405 Orsay, France  Yair Gutierrez FosadoSchool of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK  Martin LenzLaboratoire de Physique Théorique et Modèles Statistiques (LPTMS), CNRS, Université Paris-Saclay, F-91405 Orsay, FrancePMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université,Université de Paris, F-75005, Paris, France  Davide MichielettoSchool of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UKMRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK

Abstract

The process of polymer condensation, i.e. the formation of bonds between reactive end-groups, is ubiquitous in both industry and biology. Here we study generic systems undergoing polymer condensation in competition with cyclisation. Using a generalised Smoluchowski theory, molecular dynamics simulations and experiments with DNA and ATP-consuming T4 ligase, we find that this system displays a transition, from a ring-dominated regime with finite-length chains at an infinite time to a linear-polymers-dominated one with chains that keep growing in time. Finally, we show that fluids prepared close to the transition may have widely different compositions and rheology at large condensation times.

I Introduction

Linear polymer condensation is the process by which two polymeric end groups react to form a bond. Beyond its relevance to industry[1], and biotechnology[2], it underpins the biophysics of DNA repair and cloning[3]. In the absence of loop formation, polymer condensation will yield linear chains with average length l=1/(1p)delimited-⟨⟩𝑙11𝑝\langle l\rangle=1/(1-p)⟨ italic_l ⟩ = 1 / ( 1 - italic_p ) where p𝑝pitalic_p is the extent of the condensation reaction[1, 4]. However, looping, or cyclisation, is expected to be favourable in certain conditions[5, 6, 7]. Several theories on reversible polymer condensation and experiments have, over the last decades, attempted to reach a consensus on whether the polymers in such systems will all eventually convert into rings or whether there always be a linear population at a large-time scale [8, 9, 10, 11, 12, 13, 14, 15]. Despite this, the polymer physics and chemistry communities have not yet reached a consensus [15, 16, 17]. Additionally, there is little literature on irreversible polymer condensation, which we also refer to as “ligation” henceforth in analogy with the biological process of connecting DNA segments by the enzyme ligase.

Here we study irreversible linear polymer condensation using a combination of theory, simulations, and experiments. First, we show that irreversible polymer condensation is well captured by a modified Smoluchowski coagulation equation[18, 19] with an additional sink term that captures ring formation. By spanning a range of monomer concentrations c𝑐citalic_c, we discover that above a critical c0.1csimilar-to-or-equalssuperscript𝑐0.1superscript𝑐c^{\dagger}\simeq 0.1c^{*}italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ≃ 0.1 italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT there is a “runaway” transition characterised by a population of chains that permanently escape cyclisation. Here c=l0/(4/3πRg3c^{*}=l_{0}/(4/3\pi R_{g}^{3}italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / ( 4 / 3 italic_π italic_R start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT) denotes the overlap concentration of polymers with l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and Rgsubscript𝑅𝑔R_{g}italic_R start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT the initial polymer length and radius of gyration respectively. This transition separates a regime (c<c)𝑐superscript𝑐(c<c^{\dagger})( italic_c < italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ) in which all the chains are converted into rings at infinite time, from one (c>c𝑐superscript𝑐c>c^{\dagger}italic_c > italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT) in which the length of the linear chains diverges in time. The consequence of this runaway transition is that systems prepared close to csuperscript𝑐c^{\dagger}italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT and driven out-of-equilibrium by irreversible condensation will display markedly different architectural and rheological features at large enough times.

Our work differs from classic and also more recent papers on polymer condensation and cyclisation[8, 11, 20, 11, 16] because it deals with irreversible condensation while implementing subdiffusive search and cyclisation in a Smoluchowski framework and because it suggests through theory, simulations and experiments, that a runaway transition is expected beyond a critical concentration.We also argue that DNA is particularly suitable to test these theories as we can readily visualise the products of ligation reactions by gel electrophoresis and distinguish linear and circular forms by treating the samples with exonuclease, as described below.We conclude our paper by discussing the implications of our findings in the design of soft materials and DNA cloning.

II Methods

II.1 Molecular Dynamics Simulations

Runaway Transition in Irreversible Polymer Condensation with cyclisation (1)

We model a 6,500 bp-long linear DNA molecule as a bead-spring polymer made of l0=174subscript𝑙0174l_{0}=174italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 174 beads. The total number of polymer chains is Nc=200subscript𝑁𝑐200N_{c}=200italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 200. The polymers are modelled via the Kremer-Grest model[21]. Each bead has a diameter σ=13𝜎13\sigma=13italic_σ = 13 nm (or 38similar-toabsent38\sim 38∼ 38 bp), modelled as a truncated and shifted Lennard-Jones potential (WCA)

ULJ(r)=4ϵ[(σ/r)12(σ/r)6+1/4],subscript𝑈LJ𝑟4italic-ϵdelimited-[]superscript𝜎𝑟12superscript𝜎𝑟614U_{\text{LJ}}(r)=4\epsilon\left[(\sigma/r)^{12}-(\sigma/r)^{6}+1/4\right],italic_U start_POSTSUBSCRIPT LJ end_POSTSUBSCRIPT ( italic_r ) = 4 italic_ϵ [ ( italic_σ / italic_r ) start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT - ( italic_σ / italic_r ) start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + 1 / 4 ] ,(1)

for r<rc=21/6σ𝑟subscript𝑟𝑐superscript216𝜎r<r_{c}=2^{1/6}\sigmaitalic_r < italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 2 start_POSTSUPERSCRIPT 1 / 6 end_POSTSUPERSCRIPT italic_σ and 0 otherwise. Here r𝑟ritalic_r represents the distance between beads and ϵ=1.0italic-ϵ1.0\epsilon=1.0italic_ϵ = 1.0 (in LJ units) parametrises the strength of the potential. The diameter of the bead, σ𝜎\sigmaitalic_σ, defines the length units in our system. Consecutive beads are connected through a permanent Finite Extensible Non-linear Elastic (FENE) bond

UFENE(r)=0.5KR02log[1(r/R0)2]subscript𝑈FENE𝑟0.5𝐾superscriptsubscript𝑅021superscript𝑟subscript𝑅02U_{\text{FENE}}(r)=-0.5KR_{0}^{2}\log{\left[1-\left(r/R_{0}\right)^{2}\right]}italic_U start_POSTSUBSCRIPT FENE end_POSTSUBSCRIPT ( italic_r ) = - 0.5 italic_K italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_log [ 1 - ( italic_r / italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ](2)

with K=30ϵ/σ2𝐾30italic-ϵsuperscript𝜎2K=30\epsilon/\sigma^{2}italic_K = 30 italic_ϵ / italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and R0=1.5σsubscript𝑅01.5𝜎R_{0}=1.5\sigmaitalic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1.5 italic_σ, which is summed to a WLC potential to yield an equilibrium bond length around 0.9σ0.9𝜎0.9\sigma0.9 italic_σ. The bending stiffness of the polymer is controlled by a Kratky–Porod interaction

Ub(r)=kBTlpσ(1cosθ),subscript𝑈𝑏𝑟subscript𝑘𝐵𝑇subscript𝑙𝑝𝜎1𝜃U_{b}(r)=\dfrac{k_{B}Tl_{p}}{\sigma}(1-\cos{\theta}),italic_U start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_σ end_ARG ( 1 - roman_cos italic_θ ) ,(3)

which constrains the angle (θ𝜃\thetaitalic_θ) defined by the two tangent vectors connecting three consecutive beads along the polymer. Here, lp=4σ=150subscript𝑙𝑝4𝜎150l_{p}=4\sigma=150italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 4 italic_σ = 150 bp is the persistence length of DNA. We note that as l0lpmuch-greater-thansubscript𝑙0subscript𝑙𝑝l_{0}\gg l_{p}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, we are always in the flexible chain regime. The solvent is simulated implicitly using a Langevin thermostat so that the time evolution of our system is governed by the stochastic partial differential equations

m𝒓¨=ζ𝒓˙U+2kBTζ𝜹𝑚¨𝒓𝜁˙𝒓bold-∇𝑈2subscript𝑘𝐵𝑇𝜁𝜹m\ddot{\bm{r}}=-\zeta\dot{\bm{r}}-\bm{\nabla}U+\sqrt{2k_{B}T\zeta}\bm{\delta}italic_m over¨ start_ARG bold_italic_r end_ARG = - italic_ζ over˙ start_ARG bold_italic_r end_ARG - bold_∇ italic_U + square-root start_ARG 2 italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T italic_ζ end_ARG bold_italic_δ(4)

where 𝒓𝒓\bm{r}bold_italic_r is the position of a particle, ζ𝜁\zetaitalic_ζ its friction, m𝑚mitalic_m its mass, U𝑈Uitalic_U the sum of the interaction potentials discussed above and 𝜹𝜹\bm{\delta}bold_italic_δ white noise with unit variance. The diffusion timescale is τB=ζσ2/kBTsubscript𝜏𝐵𝜁superscript𝜎2subscript𝑘𝐵𝑇\tau_{B}=\zeta\sigma^{2}/k_{B}Titalic_τ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_ζ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T. The integration of the Langevin equation is done with a velocity-Verlet algorithm, using a time step Δt=0.01τBΔ𝑡0.01subscript𝜏𝐵\Delta t=0.01\tau_{B}roman_Δ italic_t = 0.01 italic_τ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT in LAMMPS[22].

Various monomer densities were considered, ranging from 102csuperscript102superscript𝑐10^{-2}c^{*}10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT to 1c1superscript𝑐1c^{*}1 italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, where c=0.012σ3superscript𝑐0.012superscript𝜎3c^{*}=0.012\sigma^{-3}italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0.012 italic_σ start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT is the monomer concentration at which the polymers start to overlap. The overlap concentration csuperscript𝑐c^{*}italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT was measured by computing the radius of gyration Rgsubscript𝑅𝑔R_{g}italic_R start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT of the polymers in equilibrium at infinite dilution. All the systems were equilibrated for a sufficient amount of time to ensure that the polymer chains have moved at least a distance equal to Rgsubscript𝑅𝑔R_{g}italic_R start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT.

After the equilibration step, 40 replicas of production runs were started for each number density considered. The ligation is performed stochastically and is attempted every tl=τBsubscript𝑡𝑙subscript𝜏𝐵t_{l}=\tau_{B}italic_t start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = italic_τ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT between two end beads that are closer than Rc=1.1σsubscript𝑅𝑐1.1𝜎R_{c}=1.1\sigmaitalic_R start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 1.1 italic_σ using the fix bond/create LAMMPS command. The choice of the time in between ligation attempts, tlsubscript𝑡𝑙t_{l}italic_t start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT, was made so that it was much shorter than the relaxation time of the chains; in this way, the condensation process is diffusion-limited. The distance threshold Rcsubscript𝑅𝑐R_{c}italic_R start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT was chosen so that the new bond created is a FENE with cutoff 1.5 σ𝜎\sigmaitalic_σ and to avoid unstable simulations. The probability of successful ligation (i.e., bond formation) is set to pl=0.1subscript𝑝𝑙0.1p_{l}=0.1italic_p start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = 0.1. This value was chosen to avoid “granularity” in the stochastic condensation reaction. If this parameter was set to 1, all the ends that can react would do so in a single time step introducing granular events in our simulations. Setting pl<1subscript𝑝𝑙1p_{l}<1italic_p start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT < 1 introduces some randomness that simply maps to a smaller average condensation rate. We have tested slightly different choices of these parameters and we found that the main results and qualitative behaviour of our results are not affected. In particular, we have tested that the reactions remain diffusion-limited even with our choice of plsubscript𝑝𝑙p_{l}italic_p start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT. A schematic representation of the simulation process is shown in Fig. 1.

Once ligated, the bond formed between the polymers is irreversible and cannot be broken, therefore accounting for the formation of a covalent bond between the DNA fragments. During the ligation process snapshots of the system are taken every 106superscript10610^{6}10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT time steps on both the 3D coordinates of the beads and the bond list at those time steps. From the bond list we can, later on, reconstruct the topology of the individual polymers, i.e. if fused with others to form linear chains or if circularised.

For the topology reconstruction, the trajectories and bond lists were analysed using our Python code (https://git.ecdf.ed.ac.uk/taplab/dna-ligation.git). The description of the algorithm can be found in Appendix A.

II.2 The DSMC algorithm

The modified Smoluchowski equation proposed here, (see below Eq.(5)), can only be solved analytically for certain forms of the condensation rate k1(i,j)subscript𝑘1𝑖𝑗k_{1}(i,j)italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) and of the cyclisation rate k0(l)subscript𝑘0𝑙k_{0}(l)italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ). As our Molecular Dynamics simulations are practically limited to systems of hundreds of chains, to characterize the behaviour of larger systems we solve the Smoluchowski equation numerically employing the Direct Simulation Monte Carlo (DSMC) algorithm[23, 24, 25, 26]. DSMC is a powerful stochastic method to solve differential equations such as Eq.(5), and which samples the correct ligation kinetics in the limit of large system sizes. The algorithm employed here is similar to the one described in Ref.[26], with the difference that here we do not include fragmentation, but instead, we include ring formation. The description of the algorithm also follows Ref.[26]. The starting point for the Monte Carlo algorithm is an array 𝐦𝐦\mathbf{m}bold_m of length Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, each element i𝑖iitalic_i of which contains a number misubscript𝑚𝑖m_{i}italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT which represents the mass/length of the chain i𝑖iitalic_i:

𝐦=(m1,m2,,mNc).𝐦subscript𝑚1subscript𝑚2subscript𝑚subscript𝑁𝑐\mathbf{m}=(m_{1},m_{2},\dots,m_{N_{c}})\,.bold_m = ( italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_m start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .

A value of 00 corresponds to the absence of a certain chain. Moreover, to satisfy mass conservation we ensure that i=1Ncmi=Ncsuperscriptsubscript𝑖1subscript𝑁𝑐subscript𝑚𝑖subscript𝑁𝑐\sum_{i=1}^{N_{c}}m_{i}=N_{c}∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is true at any time during the simulation. Here, Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT denotes the total number of polymer chains. We will also consider an analogous array 𝐫𝐫\mathbf{r}bold_r of length Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT (initially empty), where we save the masses of the rings.

For an initial monodisperse condition, we set 𝐦0=(1,1,,1)subscript𝐦0111\mathbf{m}_{0}=(1,1,\dots,1)bold_m start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( 1 , 1 , … , 1 ). After the array m is initialized, we run the DSMC simulation, which consists of repeating a large number of times a Monte Carlo step (described in detail in Appendix B). The execution is terminated when the system has reached a state in which there is a single linear chain and several non-reactive rings, where the only possible reaction is the cyclisation of the remaining linear chain.

II.3 Experiments

II.3.1 Ligation Reactions with DNA

We perform irreversible condensation on linear DNA using T4 ligase New England Biolabs (NEB). This enzyme consumes ATP to form a covalent bond between two proximal and complementary double-stranded DNA ends. More specifically, we perform irreversible condensation on a monodisperse solution of linear, l0=6,500subscript𝑙06500l_{0}=6,500italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 6 , 500 bp-long plasmid (referred to as “1288” plasmid here) which is converted into a linear form by using a restriction enzyme (XhoI). This linearisation step is checked on gel electrophoresis. The equilibrium radius of gyration of this linear DNA molecule is about Rglpl0/3lp0.2similar-to-or-equalssubscript𝑅𝑔subscript𝑙𝑝subscript𝑙03subscript𝑙𝑝similar-to-or-equals0.2R_{g}\simeq l_{p}\sqrt{l_{0}/3l_{p}}\simeq 0.2italic_R start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ≃ italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT square-root start_ARG italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / 3 italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG ≃ 0.2 μ𝜇\muitalic_μm (in agreement with diffusion data from Ref.[27]). This yields an overlap concentration c=3l0Mw/(4NAπRg3)0.2superscript𝑐3subscript𝑙0subscript𝑀𝑤4subscript𝑁𝐴𝜋superscriptsubscript𝑅𝑔3similar-to-or-equals0.2c^{*}=3l_{0}M_{w}/(4N_{A}\pi R_{g}^{3})\simeq 0.2italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 3 italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT / ( 4 italic_N start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_π italic_R start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ≃ 0.2 μ𝜇\muitalic_μg/μ𝜇\muitalic_μl with Mw=650subscript𝑀𝑤650M_{w}=650italic_M start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT = 650 g/mol the molecular weight of a DNA basepair and NAsubscript𝑁𝐴N_{A}italic_N start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT the Avogadro number. For the low DNA concentration experiments we set the sample at 0.01c0.01superscript𝑐0.01c^{*}0.01 italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, i.e. c=2𝑐2c=2italic_c = 2 μ𝜇\muitalic_μg/ml. To perform ligation we use T4 ligase (NEB, M0202L, 1U corresponds to 0.5 ng or 0.00735 pmoles of protein according to Ref.[28]), and work at 1x T4 ligase reaction buffer concentration, which contains 1 mM ATP. To classify the topology of the DNA under ligation, we perform time-resolved gel electrophoresis. We prepare a master solution of DNA at the desired concentration, 1x ligase buffer and 2 U/μ𝜇\muitalic_μl T4 ligase.

After adding T4 ligase, we draw aliquots at time intervals and heat-inactivate the reaction by heating the aliquot at 65C for 15 minutes. We then split the aliquot and treat one of the two sub-aliquots using exonuclease (RecBCD, Lucigen), an enzyme that digests linear, but not circular, DNA. Finally, we treat all aliquots with Nb.BbvCI Nickase (NEB, R0631L) to relax the supercoiled population [29]. The resulting aliquots are run on a gel: we load 20ng of DNA from each aliquot onto a 1% agarose gel prepared using 1x TAE buffer. A standard λ𝜆\lambdaitalic_λDNA - HindIII digest (NEB, N3012S) marker is also loaded. The gel is run at similar-to\sim 2.5V/cm for 5 hours and post-stained with SybrGold (ThermoFisher) for 30 minutes. A Syngene G-box and Genesys software is used to image the gels.

The combination of nickase (relaxing the DNA supercoiling) and exonuclease (fully digesting linear DNA molecules) allowed the topology of the DNA in each band to be unambiguously identified. Further, the λ𝜆\lambdaitalic_λDNA - HindIII digest marker confirmed the bands were of the correct size for monomer and dimer lengths. Here the terms “monomer” and “dimer” refer to a single DNA molecule and two molecules ligated, respectively. To extract the relative amount of molecules in each lane we compute, using ImageJ, the intensity of each lane and account for the fact that the band with dimers has chains that are twice as long. We then normalise against the sum of the three bands to obtain the relative fraction of chains in each population.

II.3.2 Microrheology

The viscosity of the systems is measured using particle tracking microrheology. Solutions are made by mixing 8 μ𝜇\muitalic_μl of 1288 linearised plasmid at different concentrations to a final concentration in the range 2ng/μ𝜇\muitalic_μl-500ng/μ𝜇\muitalic_μl with 1 μ𝜇\muitalic_μl of 40 U/ul T4 ligase and 1 μ𝜇\muitalic_μl of T4 ligase reaction buffer. Control solutions are prepared at the same time and in the same manner substituting additional TE for the T4 ligase. The samples are kept at room temperature on a roller for several days. The samples are then spiked with a=800𝑎800a=800italic_a = 800 nm PVP-coated polystyrene beads, pipetted and sealed onto a slide and imaged using an inverted microscope. We take a 30-minute movie and we analyse the movies using a particle tracking algorithm (trackpy[30]) and extract the trajectories and mean squared displacements(MSD) of the tracers Δr2(t)=[𝒓(t+τ)𝒓(t)]2delimited-⟨⟩Δsuperscript𝑟2𝑡delimited-⟨⟩superscriptdelimited-[]𝒓𝑡𝜏𝒓𝑡2\langle\Delta r^{2}(t)\rangle=\langle\left[\bm{r}(t+\tau)-\bm{r}(t)\right]^{2}\rangle⟨ roman_Δ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) ⟩ = ⟨ [ bold_italic_r ( italic_t + italic_τ ) - bold_italic_r ( italic_t ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩. Diffusion coefficients are extracted by fitting to the MSDs via MSD=2Dtabsent2𝐷𝑡=2Dt= 2 italic_D italic_t. The viscosity is obtained using the Stokes-Einstein relation[31], η=kBT/(3πDa)𝜂subscript𝑘𝐵𝑇3𝜋𝐷𝑎\eta=k_{B}T/(3\pi Da)italic_η = italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T / ( 3 italic_π italic_D italic_a ).

III Results

Runaway Transition in Irreversible Polymer Condensation with cyclisation (2)

III.1 Smoluchowski equation with cyclisation

In this result section, we first propose a modified Smoluchowski equation[18, 19] describing polymers undergoing irreversible condensation (ligation) and cyclisation. Linear polymers undergo irreversible ligation with rate k1(i,j)subscript𝑘1𝑖𝑗k_{1}(i,j)italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ), with i,j𝑖𝑗i,jitalic_i , italic_j the polymerisation indexes of the reactants, and cyclisation with rate k0(q)subscript𝑘0𝑞k_{0}(q)italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_q ). The concentrations of linear polymers of polymerisation index q𝑞qitalic_q at time t𝑡titalic_t, nq(t)subscript𝑛𝑞𝑡n_{q}(t)italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_t ), and of rings, nqr(t)superscriptsubscript𝑛𝑞𝑟𝑡n_{q}^{r}(t)italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ), are thus governed by the following equations:

n˙q(t)subscript˙𝑛𝑞𝑡\displaystyle\dot{n}_{q}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_t )=12ij;i+j=qk1(i,j)ni(t)nj(t)+absentlimit-from12subscript𝑖𝑗𝑖𝑗𝑞subscript𝑘1𝑖𝑗subscript𝑛𝑖𝑡subscript𝑛𝑗𝑡\displaystyle=\frac{1}{2}\sum_{ij;i+j=q}k_{1}(i,j)n_{i}(t)n_{j}(t)+= divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_i italic_j ; italic_i + italic_j = italic_q end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) italic_n start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_t ) +
nq(t)i=1k1(q,i)ni(t)k0(q)nq(t)subscript𝑛𝑞𝑡superscriptsubscript𝑖1subscript𝑘1𝑞𝑖subscript𝑛𝑖𝑡subscript𝑘0𝑞subscript𝑛𝑞𝑡\displaystyle-n_{q}(t)\sum_{i=1}^{\infty}k_{1}(q,i)n_{i}(t)-k_{0}(q)n_{q}(t)- italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_t ) ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_q , italic_i ) italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) - italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_q ) italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_t )(5a)
n˙qr(t)superscriptsubscript˙𝑛𝑞𝑟𝑡\displaystyle\dot{n}_{q}^{r}(t)over˙ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t )=k0(q)nq(t).absentsubscript𝑘0𝑞subscript𝑛𝑞𝑡\displaystyle=k_{0}(q)n_{q}(t)\,.= italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_q ) italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_t ) .(5b)

Once a linear chain undergoes cyclisation, it becomes a ring and cannot undergo ligation anymore, as the reactions are assumed to be irreversible. The kinetics is also constrained by the requirement that the total mass is conserved:

q=1q[nq(t)+nqr(t)]=M/V=nt,formulae-sequencesuperscriptsubscript𝑞1𝑞delimited-[]subscript𝑛𝑞𝑡superscriptsubscript𝑛𝑞𝑟𝑡𝑀𝑉𝑛for-all𝑡\sum_{q=1}^{\infty}q[n_{q}(t)+n_{q}^{r}(t)]=M/V=n\quad\forall t\,,∑ start_POSTSUBSCRIPT italic_q = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_q [ italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) ] = italic_M / italic_V = italic_n ∀ italic_t ,(6)

where M𝑀Mitalic_M is the total number of monomers and V𝑉Vitalic_V is the system’s volume. Assuming that the reaction takes place on a time scale larger than the Rouse relaxation time, the length-dependence of the annealing rate is[32, 33]

k1(i,j)subscript𝑘1𝑖𝑗\displaystyle k_{1}(i,j)italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j )=κ~1(Di+Dj)(Ri+Rj)absentsubscript~𝜅1subscript𝐷𝑖subscript𝐷𝑗subscript𝑅𝑖subscript𝑅𝑗\displaystyle=\tilde{\kappa}_{1}(D_{i}+D_{j})(R_{i}+R_{j})= over~ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_D start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_D start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ( italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT )(7)
=κ1(iα+jα)(iν+jν),absentsubscript𝜅1superscript𝑖𝛼superscript𝑗𝛼superscript𝑖𝜈superscript𝑗𝜈\displaystyle=\kappa_{1}\left(i^{-\alpha}+j^{-\alpha}\right)\left(i^{\nu}+j^{%\nu}\right)\,,= italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT ) ( italic_i start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ) ,(8)

where l=il0𝑙𝑖subscript𝑙0l=il_{0}italic_l = italic_i italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the length of a polymer with a degree of polymerisation i𝑖iitalic_i and l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the initial polymer length, so that the chain’s radius of gyration is Ri=l0iνsubscript𝑅𝑖subscript𝑙0superscript𝑖𝜈R_{i}=l_{0}i^{\nu}italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT. In Eq.(8), κ~1subscript~𝜅1\tilde{\kappa}_{1}over~ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a dimensionless constant and κ1subscript𝜅1\kappa_{1}italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a constant that depends on temperature and the viscous friction of the solvent ζ𝜁\zetaitalic_ζ. For example, in the Rouse model[34] Di=kBT/(ζl0i)subscript𝐷𝑖subscript𝑘𝐵𝑇𝜁subscript𝑙0𝑖D_{i}=k_{B}T/(\zeta l_{0}i)italic_D start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T / ( italic_ζ italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_i ) (α=1𝛼1\alpha=1italic_α = 1) and thus κ1=κ~1kBT/ζsubscript𝜅1subscript~𝜅1subscript𝑘𝐵𝑇𝜁\kappa_{1}=\tilde{\kappa}_{1}k_{B}T/\zetaitalic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = over~ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T / italic_ζ.

This condensation rate captures the diffusion-controlled search process[32, 33]. The cyclisation rate is taken to be k0(q)=κ0qμsubscript𝑘0𝑞subscript𝜅0superscript𝑞𝜇k_{0}(q)=\kappa_{0}q^{\mu}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_q ) = italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_q start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT, where μ=4ν𝜇4𝜈\mu=-4\nuitalic_μ = - 4 italic_ν. Note that this is different from the classic Shimada-Yamakawa theory[20, 35] which would predict μ=3ν𝜇3𝜈\mu=-3\nuitalic_μ = - 3 italic_ν at lengths larger than lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT because we (i) are out-of-equilibrium and (ii) account for the subdiffusion of the polymer end within the volume of the coil.

In equilibrium, the looping probability of a chain is given by the Shimada-Yamakawa formula[20, 36]. For llpmuch-greater-than𝑙subscript𝑙𝑝l\gg l_{p}italic_l ≫ italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT the looping probability of a polymer decays as P(l)lμsimilar-to𝑃𝑙superscript𝑙𝜇P(l)\sim l^{\mu}italic_P ( italic_l ) ∼ italic_l start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT with μ=3ν𝜇3𝜈\mu=-3\nuitalic_μ = - 3 italic_ν. This looping probability also holds for an irreversible, non-equilibrium scenario if the process is reaction-limited. This is because the chain ends would have the time to explore many conformations and to diffuse the whole volume of the chain, Vl3νsimilar-to𝑉superscript𝑙3𝜈V\sim l^{3\nu}italic_V ∼ italic_l start_POSTSUPERSCRIPT 3 italic_ν end_POSTSUPERSCRIPT, before reacting (as it would happen in equilibrium).In a diffusion-limited, irreversible ligation process, one should instead compute the time it takes for an end to diffuse over a certain distance ξ𝜉\xiitalic_ξ. The dynamics of the end is described by the Rouse model[34] so that ξ=b[kBTt/(ζb2)]1/4𝜉𝑏superscriptdelimited-[]subscript𝑘𝐵𝑇𝑡𝜁superscript𝑏214\xi=b[k_{B}Tt/(\zeta b^{2})]^{1/4}italic_ξ = italic_b [ italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T italic_t / ( italic_ζ italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT, where b𝑏bitalic_b is the size of a Kuhn monomer. Then, setting ξ=R𝜉𝑅\xi=Ritalic_ξ = italic_R (the size of the polymer coil) one obtains (R/b)4=kBTt/(ζb2)superscript𝑅𝑏4subscript𝑘𝐵𝑇𝑡𝜁superscript𝑏2(R/b)^{4}=k_{B}Tt/(\zeta b^{2})( italic_R / italic_b ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T italic_t / ( italic_ζ italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), which implies k0t1R4l4νsimilar-tosubscript𝑘0superscript𝑡1similar-tosuperscript𝑅4similar-tosuperscript𝑙4𝜈k_{0}\sim t^{-1}\sim R^{-4}\sim l^{-4\nu}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∼ italic_t start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∼ italic_R start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT ∼ italic_l start_POSTSUPERSCRIPT - 4 italic_ν end_POSTSUPERSCRIPT. So considering μ=4ν𝜇4𝜈\mu=-4\nuitalic_μ = - 4 italic_ν effectively takes into account the fact that the chain ends are performing a sub-diffusive search process within the polymer coil, as expected for Rouse dynamics.

We have verified that the rate of cyclisation scales as the length of the chain to the power 4ν4𝜈-4\nu- 4 italic_ν by measuring the rate at which rings are produced for different lengths of the linear chains (Fig.2a-b). We have done this by changing the initial length l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and by running short simulations, in turn assuming that the system has had no time to create dimers, trimers, etc. and by measuring the number of rings formed. We have observed that the rate of ring formation at early times N˙ringsl02.6similar-tosubscript˙𝑁ringssuperscriptsubscript𝑙02.6\dot{N}_{\text{rings}}\sim l_{0}^{-2.6}over˙ start_ARG italic_N end_ARG start_POSTSUBSCRIPT rings end_POSTSUBSCRIPT ∼ italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2.6 end_POSTSUPERSCRIPT which is close to the expected μ=4ν=2.4𝜇4𝜈2.4\mu=-4\nu=2.4italic_μ = - 4 italic_ν = 2.4 with ν=0.588𝜈0.588\nu=0.588italic_ν = 0.588. Thus, both theory and simulations suggest that the diffusion limited, irreversible looping probability of a polymer scales with its length as l4νsuperscript𝑙4𝜈l^{-4\nu}italic_l start_POSTSUPERSCRIPT - 4 italic_ν end_POSTSUPERSCRIPT.

To validate the functional form used for the condensation rate k1(i,j)subscript𝑘1𝑖𝑗k_{1}(i,j)italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) (Eq.(8)), we solve the Smoluchowski equation in the limit of small concentration and short times, where only monomer, dimer and monomer ring populations are assumed to be present (see next Section). In Fig.2c we plot the condensation rate k1subscript𝑘1k_{1}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT as a function of different initial polymer lengths obtained by fitting the analytical solution of Eq.(10b) (see below) to the monomer chains population omitting the second term since no rings were present in these conditions and at early times. From this quantity, we fit a power law lναsuperscript𝑙𝜈𝛼l^{\nu-\alpha}italic_l start_POSTSUPERSCRIPT italic_ν - italic_α end_POSTSUPERSCRIPT with ν=0.588𝜈0.588\nu=0.588italic_ν = 0.588 and find α1similar-to-or-equals𝛼1\alpha\simeq 1italic_α ≃ 1 yields a good fit to the simulated data. This validates de Gennes’ hypothesis for the functional form of the condensation rate (Eq.(8)) and our choices for ν𝜈\nuitalic_ν and α𝛼\alphaitalic_α.

In our experiments and simulations, we typically track the mean length of the polymers as a function of time

l(t)=l0i=1i(ni(t)+nir(t))i=1(ni(t)+nir(t)),delimited-⟨⟩𝑙𝑡subscript𝑙0superscriptsubscript𝑖1𝑖subscript𝑛𝑖𝑡superscriptsubscript𝑛𝑖𝑟𝑡superscriptsubscript𝑖1subscript𝑛𝑖𝑡superscriptsubscript𝑛𝑖𝑟𝑡\langle l(t)\rangle=l_{0}\dfrac{\sum_{i=1}^{\infty}i(n_{i}(t)+n_{i}^{r}(t))}{%\sum_{i=1}^{\infty}(n_{i}(t)+n_{i}^{r}(t))}\,,⟨ italic_l ( italic_t ) ⟩ = italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_i ( italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) ) end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) ) end_ARG ,(9)

and we fit this observable with the numerical solution of the full Smoluchowski equation, Eqs.(5a)-(5b)). This is practically implemented in a MATLAB code. The numerical evaluation of the system is iterated to find the best free parameters κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and κ1subscript𝜅1\kappa_{1}italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT that fit the mean length l(t)delimited-⟨⟩𝑙𝑡\langle l(t)\rangle⟨ italic_l ( italic_t ) ⟩ obtained from simulations or experiments.The fit is done using the nonlinear least squares MATLAB function lsqcurvefit. The rate of ring formation κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and the rate of linear chains formation κ1subscript𝜅1\kappa_{1}italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT are extracted from this fit by considering 40 independent replicas, allowing us to obtain the error on the fit parameters. For experiments, we typically average over 3 independent replicas. The numerical and fitting algorithms are described in detail in Appendix C.

III.1.1 Time-dependence of the mean length: dilute regime

At short times and in the dilute regime, we can assume that the formation of rings and short n𝑛nitalic_n-mers is more favourable. This assumption is valid in the experiments whenever only linear monomers, dimers and monomer rings are visible in the gel electrophoresis after ligation. In more dense solutions the presence of rings consisting of more than two monomer chains will be present and is observed in our simulations.Under very dilute conditions, we can thus assume that only monomers, dimers and monomer rings are present. Denoting the number density of monomer rings, linear monomers and dimers as n1r,n1superscriptsubscript𝑛1𝑟subscript𝑛1n_{1}^{r},n_{1}italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and n2subscript𝑛2n_{2}italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, respectively, the Smoluchowski equations describing the system take the form

dn1r(t)dt=k0(1)n1(t)𝑑superscriptsubscript𝑛1𝑟𝑡𝑑𝑡subscript𝑘01subscript𝑛1𝑡\displaystyle\dfrac{dn_{1}^{r}(t)}{dt}=k_{0}(1)n_{1}(t)divide start_ARG italic_d italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t )(10a)
dn1(t)dt=k1(1,1)n12(t)k0(1)n1(t)𝑑subscript𝑛1𝑡𝑑𝑡subscript𝑘111superscriptsubscript𝑛12𝑡subscript𝑘01subscript𝑛1𝑡\displaystyle\dfrac{dn_{1}(t)}{dt}=-k_{1}(1,1)n_{1}^{2}(t)-k_{0}(1)n_{1}(t)divide start_ARG italic_d italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = - italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , 1 ) italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) - italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t )(10b)
dn2(t)dt=12k1(1,1)n12(t).𝑑subscript𝑛2𝑡𝑑𝑡12subscript𝑘111superscriptsubscript𝑛12𝑡\displaystyle\dfrac{dn_{2}(t)}{dt}=\dfrac{1}{2}k_{1}(1,1)n_{1}^{2}(t)\,.divide start_ARG italic_d italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , 1 ) italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) .(10c)

We solve Eq.(10b) neglecting the second term as n121much-less-thansuperscriptsubscript𝑛121n_{1}^{2}\ll 1italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ 1 in the infinite dilution limit:

n1(t)=n1(0)ek0(1)tsubscript𝑛1𝑡subscript𝑛10superscript𝑒subscript𝑘01𝑡n_{1}(t)=n_{1}(0)e^{-k_{0}(1)t}italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) = italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 0 ) italic_e start_POSTSUPERSCRIPT - italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) italic_t end_POSTSUPERSCRIPT(11)

The concentration of monomer rings is thus

dn1r(t)dt=k0n1(0)ek0(1)t,𝑑superscriptsubscript𝑛1𝑟𝑡𝑑𝑡subscript𝑘0subscript𝑛10superscript𝑒subscript𝑘01𝑡\dfrac{dn_{1}^{r}(t)}{dt}=k_{0}n_{1}(0)e^{-k_{0}(1)t}\,,divide start_ARG italic_d italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 0 ) italic_e start_POSTSUPERSCRIPT - italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) italic_t end_POSTSUPERSCRIPT ,(12)

which yields

n1r(t)=n1(0)[1ek0(1)t].superscriptsubscript𝑛1𝑟𝑡subscript𝑛10delimited-[]1superscript𝑒subscript𝑘01𝑡n_{1}^{r}(t)=n_{1}(0)[1-e^{-k_{0}(1)t}]\,.italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) = italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 0 ) [ 1 - italic_e start_POSTSUPERSCRIPT - italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) italic_t end_POSTSUPERSCRIPT ] .(13)

Substituting in Eq.(10c), we get

dn2(t)dt=12k1(1,1)n12(t)=12k1(1,1)[n1(0)ek0(1)t]2,𝑑subscript𝑛2𝑡𝑑𝑡12subscript𝑘111superscriptsubscript𝑛12𝑡12subscript𝑘111superscriptdelimited-[]subscript𝑛10superscript𝑒subscript𝑘01𝑡2\dfrac{dn_{2}(t)}{dt}=\dfrac{1}{2}k_{1}(1,1){n_{1}}^{2}(t)=\dfrac{1}{2}k_{1}(1%,1)\left[n_{1}(0)e^{-k_{0}(1)t}\right]^{2}\,,divide start_ARG italic_d italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , 1 ) italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , 1 ) [ italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 0 ) italic_e start_POSTSUPERSCRIPT - italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) italic_t end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(14)

from which one obtains

n2(t)=k1(1,1)4k0(1)n12(0)[1e2k0(1)t].subscript𝑛2𝑡subscript𝑘1114subscript𝑘01superscriptsubscript𝑛120delimited-[]1superscript𝑒2subscript𝑘01𝑡n_{2}(t)=\dfrac{k_{1}(1,1)}{4k_{0}(1)}{n_{1}}^{2}(0)\left[1-e^{-2k_{0}(1)t}%\right]\,.italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , 1 ) end_ARG start_ARG 4 italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) end_ARG italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 0 ) [ 1 - italic_e start_POSTSUPERSCRIPT - 2 italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 ) italic_t end_POSTSUPERSCRIPT ] .(15)

Assuming these three are the only contributions to the system, the mean length is then given by the following relation

l(t)delimited-⟨⟩𝑙𝑡\displaystyle\langle l(t)\rangle⟨ italic_l ( italic_t ) ⟩=l0n1(t)+l0n1r(t)+2l0n2(t)n1(t)+n1r(t)+n2(t)=absentsubscript𝑙0subscript𝑛1𝑡subscript𝑙0superscriptsubscript𝑛1𝑟𝑡2subscript𝑙0subscript𝑛2𝑡subscript𝑛1𝑡superscriptsubscript𝑛1𝑟𝑡subscript𝑛2𝑡absent\displaystyle=\dfrac{l_{0}n_{1}(t)+l_{0}n_{1}^{r}(t)+2l_{0}n_{2}(t)}{n_{1}(t)+%n_{1}^{r}(t)+n_{2}(t)}== divide start_ARG italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) + italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) + 2 italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) end_ARG =
=l0n1(t)+n1r(t)+2n2(t)n1(t)+n1r(t)+n2(t).absentsubscript𝑙0subscript𝑛1𝑡superscriptsubscript𝑛1𝑟𝑡2subscript𝑛2𝑡subscript𝑛1𝑡superscriptsubscript𝑛1𝑟𝑡subscript𝑛2𝑡\displaystyle=l_{0}\dfrac{n_{1}(t)+n_{1}^{r}(t)+2n_{2}(t)}{n_{1}(t)+n_{1}^{r}(%t)+n_{2}(t)}\,.= italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) + 2 italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) + italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t ) end_ARG .(16)

In denser solutions, where the population is more polydisperse, the Smoluchowski equation cannot be solved analytically and we refer to the next Section for a scaling prediction and to Sec. III.3.1 for a perturbative approach in the limit of small cyclisation rate.

As mentioned above, we validate de Gennes’ equation for the condensation rate (Eq.(8)) by running short simulations at very high dilution. We then fitted the change in number of ring monomers with the closed solutions Eqs.((13)) for different values of initial polymer length l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Similarly, we fit the solution of Eq.(10b) without the ring term to the population of monomers. From these data, we validate the scaling of the rates k0(l0)=κ0l0μsubscript𝑘0subscript𝑙0subscript𝜅0superscriptsubscript𝑙0𝜇k_{0}(l_{0})=\kappa_{0}l_{0}^{-\mu}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT and k1(l0,l0)=κ1l0ανsubscript𝑘1subscript𝑙0subscript𝑙0subscript𝜅1superscriptsubscript𝑙0𝛼𝜈k_{1}(l_{0},l_{0})=\kappa_{1}l_{0}^{\alpha-\nu}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α - italic_ν end_POSTSUPERSCRIPT as a function of length l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (Fig.2b-c).

III.1.2 Time-dependence of the mean length: concentrated regime

Here we give scaling arguments for the solution of the Smoluchowski equation in the concentrated limit, with the assumption that ring formation is negligible. At the mean-field level, we can make the simplifying assumption that the system can be described by a single characteristic length scale l𝑙litalic_l[37]. Under this assumption, the annealing rate scales as

k1(l)DRlνα.similar-tosubscript𝑘1𝑙𝐷𝑅similar-tosuperscript𝑙𝜈𝛼k_{1}(l)\sim DR\sim l^{\nu-\alpha}\,.italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_l ) ∼ italic_D italic_R ∼ italic_l start_POSTSUPERSCRIPT italic_ν - italic_α end_POSTSUPERSCRIPT .(17)

The total polymer density n𝑛nitalic_n thus follows n˙=k1(l)n2˙𝑛subscript𝑘1𝑙superscript𝑛2\dot{n}=-k_{1}(l)n^{2}over˙ start_ARG italic_n end_ARG = - italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_l ) italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, so that from the dimensional analysis the time evolution of the characteristic length is[38, 39]

l(t)t1/(1+αν)t1/(1λ)tγ,similar-to𝑙𝑡superscript𝑡11𝛼𝜈similar-tosuperscript𝑡11𝜆superscript𝑡𝛾l(t)\sim t^{1/(1+\alpha-\nu)}\sim t^{1/(1-\lambda)}\equiv t^{\gamma}\,,italic_l ( italic_t ) ∼ italic_t start_POSTSUPERSCRIPT 1 / ( 1 + italic_α - italic_ν ) end_POSTSUPERSCRIPT ∼ italic_t start_POSTSUPERSCRIPT 1 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT ≡ italic_t start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ,(18)

with λ=να𝜆𝜈𝛼\lambda=\nu-\alphaitalic_λ = italic_ν - italic_α. For Rouse dynamics, one has α=1𝛼1\alpha=1italic_α = 1, whereas α=2𝛼2\alpha=2italic_α = 2 for reptation[40]. The Flory exponent has value ν=1/2𝜈12\nu=1/2italic_ν = 1 / 2 for ideal chains and ν=0.588𝜈0.588\nu=0.588italic_ν = 0.588 for self-avoiding chains[40]. Assuming concentrations above overlap but still far from the melt concentration (for which one would have ideal chain statistics and α=1/2𝛼12\alpha=1/2italic_α = 1 / 2), we can assume ν=0.588𝜈0.588\nu=0.588italic_ν = 0.588, so that γ0.7similar-to-or-equals𝛾0.7\gamma\simeq 0.7italic_γ ≃ 0.7 if the system is unentangled and γ0.4similar-to-or-equals𝛾0.4\gamma\simeq 0.4italic_γ ≃ 0.4 in the presence of entanglement. We note, however, that using Eq.(17) in the presence of entanglements is only valid for times longer than the reptation time τRl3similar-tosubscript𝜏𝑅superscript𝑙3\tau_{R}\sim l^{3}italic_τ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ∼ italic_l start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT[41].

Runaway Transition in Irreversible Polymer Condensation with cyclisation (3)

III.2 Linear DNA condensation

III.2.1 Simulations

We first simulate linear condensation using Molecular Dynamics. As detailed in the Methods section, we simulate polymers with N=174𝑁174N=174italic_N = 174 beads of size σ38similar-to𝜎38\sigma\sim 38italic_σ ∼ 38 bp and persistence length lp=4σ=150subscript𝑙𝑝4𝜎150l_{p}=4\sigma=150italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 4 italic_σ = 150 bp. These polymers are thus designed to coarse-grain 6.5 kb-long DNA plasmids which will be employed in experiments (see next section).During the simulation, we take snapshots of the system and record the list of bonds to reconstruct the topology of the polymers (see Fig.1). Over the simulation time, the number of initial linear chains decreases due to the formation of (i) longer linear polymers or (ii) circular chains (Fig.3a). Additionally, lower monomer concentrations c𝑐citalic_c promote the formation of more rings at large times and a slower decrease of the linear species. We also note that (i) the number fraction of rings converges to a finite value at large time, and that (ii) while the number of linear chains appears to go to zero, their mean length increases (Fig. 3b). Accordingly, the (number) average length of polymers grows more quickly for larger c𝑐citalic_c (Fig.3b). Thus, we conclude that loop formation competes with the growth of the chains, and that cyclisation is dominant in dilute systems. Interestingly, the curves of the mean length l(t)delimited-⟨⟩𝑙𝑡\langle l(t)\rangle⟨ italic_l ( italic_t ) ⟩ can be fitted extremely well by the numerical solution of the Smoluchowski equation Eq.(5) (Fig.3b).

III.2.2 Experiments

As described in the Methods Section, we can perform DNA condensation using solutions of linearised DNA plasmids, mixed with ATP and DNA T4 ligase. We then perform a time-resolved experiment, where we draw aliquots from a master reaction at given time points from the addition of the T4 ligase. By running the aliquots on agarose gels we can visualise and compute the fraction of molecules in the linear and ring, monomeric, dimeric, etc. states. Fig.4a reports a picture of one such gel, displaying a single band of monomeric linear DNA (as it disappears after exonuclease treatment) at t=0𝑡0t=0italic_t = 0, evolving into three bands, one of which is exonuclease resistant (a monomer ring) at larger times. In Fig.4b we plot the relative abundance of these populations, from which we obtain the number average molecular length l(t)delimited-⟨⟩𝑙𝑡\langle l(t)\rangle⟨ italic_l ( italic_t ) ⟩ (Fig.4c).

Runaway Transition in Irreversible Polymer Condensation with cyclisation (4)

III.2.3 Dimensionless topological parameter

Since we initialise our simulations and experiments below entanglement conditions we fix α=1𝛼1\alpha=1italic_α = 1 as expected for Rouse dynamics and ν=0.588𝜈0.588\nu=0.588italic_ν = 0.588 as expected for self-avoiding polymers[34] (we verified these exponents through direct MD simulations in Fig.2a-c). In general, the Smoluchowski coagulation equation (Eq.(5)) is then solved numerically to fit the data of mean length versus time, l(t)delimited-⟨⟩𝑙𝑡\langle l(t)\rangle⟨ italic_l ( italic_t ) ⟩, obtained in simulations and experiments via the free parameters κ1subscript𝜅1\kappa_{1}italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. A key number in our system is the ratio of the rates at which polymers are condensed κ1subscript𝜅1\kappa_{1}italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and the one at which rings are formed κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. We thus define a dimensionless “topological parameter” κ2κ0/(n0κ1)𝜅2subscript𝜅0subscript𝑛0subscript𝜅1\kappa\equiv 2\kappa_{0}/(n_{0}\kappa_{1})italic_κ ≡ 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / ( italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), where n0subscript𝑛0n_{0}italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the number density of monomeric chains of length l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT at the start of the simulation or experiment.

Albeit related to the classic j-factor employed in DNA looping[20, 6], our topological parameter is more naturally interpreted as the number of rings formed for every two linear chains that are fused together. Intuitively, this number determines the final topological composition of the system. At κ1much-greater-than𝜅1\kappa\gg 1italic_κ ≫ 1, we expect the final state of the system to be dominated by rings, while for κ1much-less-than𝜅1\kappa\ll 1italic_κ ≪ 1 to be dominated by linear chains. Importantly, since k0l(t)4νsimilar-tosubscript𝑘0superscriptdelimited-⟨⟩𝑙𝑡4𝜈k_{0}\sim\langle l(t)\rangle^{-4\nu}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∼ ⟨ italic_l ( italic_t ) ⟩ start_POSTSUPERSCRIPT - 4 italic_ν end_POSTSUPERSCRIPT the probability of ring formation decreases in time as the average length of the linear chains increases. Accordingly, and even though our system has a ring-only irreversible absorbing state, we conjecture that the strongly decreasing looping probability may effectively yield a very long time-transient in which the system is dominated by entangled linear chains with circular contaminants (see below for more simulations on this).

Importantly, we expect the Smoluchowski equation to be valid only in the limit in which three-body interactions are negligible, the values of κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and κ1subscript𝜅1\kappa_{1}italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT should be independent on concentration only when c𝑐citalic_c is small enough. By plotting κ2κ0/(n0κ1)𝜅2subscript𝜅0subscript𝑛0subscript𝜅1\kappa\equiv 2\kappa_{0}/(n_{0}\kappa_{1})italic_κ ≡ 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / ( italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) as a function of c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT (where csuperscript𝑐c^{*}italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is computed at the beginning of the simulation or experiment) we show that κ𝜅\kappaitalic_κ scales as n01(c/c)1similar-tosuperscriptsubscript𝑛01superscript𝑐superscript𝑐1n_{0}^{-1}\sim(c/c^{*})^{-1}italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∼ ( italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT in both simulations and experiments until ccsimilar-to-or-equals𝑐superscript𝑐c\simeq c^{*}italic_c ≃ italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT where it starts to deviate (Fig.5); this confirms that the Smoluchowski approximation is valid in this range of concentrations. Importantly, in Fig.5 we also identify the crossover value κ=1𝜅1\kappa=1italic_κ = 1 (at which the initial cyclisation rate is larger than the dimerisation rate) around c/c0.10.2similar-to-or-equals𝑐superscript𝑐0.10.2c/c^{*}\simeq 0.1-0.2italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≃ 0.1 - 0.2. We note that the agreement between simulations and experiments is excellent for small c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. However, quantitative analysis of gel electrophoresis images at larger c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is challenging due to the poor separation of multimeric bands.

Runaway Transition in Irreversible Polymer Condensation with cyclisation (5)
Runaway Transition in Irreversible Polymer Condensation with cyclisation (6)

III.3 Runaway Transition

The results in Fig.3 suggest that at large c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT the chains tend to grow longer, and cyclisation is suppressed; at the same time, the density of reactive ends and the speed of spatial exploration of the chains become smaller, thus suppressing dimerisation. Due to this kinetic competition, we ask whether the system can truly display a “runaway” phase, defined as a regime where at least one chain permanently escapes cyclisation and its length diverges in time. One way to address this question is to look at the number of chains that belong to the longest chain in the system, and how this quantity changes in time.By using a graph representation of our simulations (see Fig.6a-b) we can compute the fraction of chains (nodes) that belong to the giant connected component (GCC), i.e. the largest cluster of connected monomer chains (Fig.6b). In Fig.6a one can visually appreciate that at large reaction time, rings (blue) are abundant at low c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT while linear chains (grey) are more abundant at large c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. These systems display a qualitatively different graph topology (Fig.6b). At small c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT (large κ𝜅\kappaitalic_κ) the network of monomers is mostly disconnected; accordingly, even when the fraction of unreacted bonds goes to 0 at t𝑡t\to\inftyitalic_t → ∞, the average length of the polymers does not diverge. On the contrary, at larger c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT we observe only a few rings and some very long chains that are connecting most of the nodes in the system. Overall, the graph appears much more connected and approaching percolation, i.e. where most of the nodes belong to the GCC, whose size grows with the size of the system (see Fig.6c).

III.3.1 Calculation of mass converted into rings at infinite time

Although our simulations support the notion that small values of κ𝜅\kappaitalic_κ will result in linear chains of increasing lengths and vanishing cyclisation rate, they are fundamentally limited to finite-size systems where the cyclisation rate of the largest chain never rigorously goes to 0. To estimate the amount of mass that is converted into rings at long times, we do a perturbative calculation valid in the limit of small κ𝜅\kappaitalic_κ. We start from the continuum Smoluchowski equation:

dnl(t)dt=120lK(y,ly)ny(t)nly(t)𝑑y+𝑑subscript𝑛𝑙𝑡𝑑𝑡limit-from12superscriptsubscript0𝑙𝐾𝑦𝑙𝑦subscript𝑛𝑦𝑡subscript𝑛𝑙𝑦𝑡differential-d𝑦\displaystyle\dfrac{dn_{l}(t)}{dt}=\dfrac{1}{2}\int_{0}^{l}K(y,l-y)n_{y}(t)n_{%l-y}(t)dy+divide start_ARG italic_d italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT italic_K ( italic_y , italic_l - italic_y ) italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_t ) italic_n start_POSTSUBSCRIPT italic_l - italic_y end_POSTSUBSCRIPT ( italic_t ) italic_d italic_y +
0K(y,l)nl(t)ny(t)𝑑y12κlμnl(t),superscriptsubscript0𝐾𝑦𝑙subscript𝑛𝑙𝑡subscript𝑛𝑦𝑡differential-d𝑦12𝜅superscript𝑙𝜇subscript𝑛𝑙𝑡\displaystyle-\int_{0}^{\infty}K(y,l)n_{l}(t)n_{y}(t)dy-\dfrac{1}{2}\kappa l^{%\mu}n_{l}(t)\,,- ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_K ( italic_y , italic_l ) italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_t ) italic_d italic_y - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_κ italic_l start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) ,(19)

We define Kk1/κ1𝐾subscript𝑘1subscript𝜅1K\equiv k_{1}/\kappa_{1}italic_K ≡ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT which is thus a scaling function such that K(ai,al)aλk1(i,l)similar-to𝐾𝑎𝑖𝑎𝑙superscript𝑎𝜆subscript𝑘1𝑖𝑙K(ai,al)\sim a^{\lambda}k_{1}(i,l)italic_K ( italic_a italic_i , italic_a italic_l ) ∼ italic_a start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_l ) where λ=να𝜆𝜈𝛼\lambda=\nu-\alphaitalic_λ = italic_ν - italic_α[42]. We now treat κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT perturbatively, starting with κ0=0subscript𝜅00\kappa_{0}=0italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0. In this case, there is no mass lost into rings and we can thus write a conservation law

0lnl(t)𝑑l=1t.superscriptsubscript0𝑙subscript𝑛𝑙𝑡differential-d𝑙1for-all𝑡\int_{0}^{\infty}ln_{l}(t)dl=1\quad\forall t\,.∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_l italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) italic_d italic_l = 1 ∀ italic_t .(20)

Even for κ𝜅\kappaitalic_κ non-zero, we assume the loss of mass to cyclisation remains finite and of order κ𝜅\kappaitalic_κ. We will check the self-consistency of this assumption below. Using the mass conservation and Eq.(19) we can write the following scaling relations: l2n=1superscript𝑙2𝑛1l^{2}n=1italic_l start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_n = 1, nt1=l1+λn2𝑛superscript𝑡1superscript𝑙1𝜆superscript𝑛2nt^{-1}=l^{1+\lambda}n^{2}italic_n italic_t start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_l start_POSTSUPERSCRIPT 1 + italic_λ end_POSTSUPERSCRIPT italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. We therefore obtain:

lt1/(1λ).similar-to𝑙superscript𝑡11𝜆l\sim t^{1/(1-\lambda)}\,.italic_l ∼ italic_t start_POSTSUPERSCRIPT 1 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT .(21)

which is the same as Eq.(18). Note that we must have λ<1𝜆1\lambda<1italic_λ < 1 for the average length of polymers to increase over time. We can also write the density distribution as

nt2/(1λ)similar-to𝑛superscript𝑡21𝜆n\sim t^{-2/(1-\lambda)}italic_n ∼ italic_t start_POSTSUPERSCRIPT - 2 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT(22)

which in the limit of long times or large lengths may be written as

nl(t)t2/(1λ)𝒢(lt1/(1λ))similar-tosubscript𝑛𝑙𝑡superscript𝑡21𝜆𝒢𝑙superscript𝑡11𝜆n_{l}(t)\sim t^{-2/(1-\lambda)}\mathcal{G}\left(\dfrac{l}{t^{1/(1-\lambda)}}\right)italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) ∼ italic_t start_POSTSUPERSCRIPT - 2 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT caligraphic_G ( divide start_ARG italic_l end_ARG start_ARG italic_t start_POSTSUPERSCRIPT 1 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT end_ARG )(23)

where 𝒢𝒢\mathcal{G}caligraphic_G is a scaling function that only depends on the ratio l/t1/(1λ)𝑙superscript𝑡11𝜆l/t^{1/(1-\lambda)}italic_l / italic_t start_POSTSUPERSCRIPT 1 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT.

We now introduce the ring length distribution nlr(t)superscriptsubscript𝑛𝑙𝑟𝑡n_{l}^{r}(t)italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) and its evolution equation as

dnlr(t)dt=2κ0lμnl(t).𝑑superscriptsubscript𝑛𝑙𝑟𝑡𝑑𝑡2subscript𝜅0superscript𝑙𝜇subscript𝑛𝑙𝑡\dfrac{dn_{l}^{r}(t)}{dt}=2\kappa_{0}l^{\mu}n_{l}(t)\,.divide start_ARG italic_d italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_l start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) .(24)

Since at time t=0𝑡0t=0italic_t = 0 there are no rings, we can then write

nlr(t)=2κ0lμ0nl(t)𝑑t.superscriptsubscript𝑛𝑙𝑟𝑡2subscript𝜅0superscript𝑙𝜇superscriptsubscript0subscript𝑛𝑙𝑡differential-d𝑡n_{l}^{r}(t\to\infty)=2\kappa_{0}l^{\mu}\int_{0}^{\infty}n_{l}(t)dt\,.italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t → ∞ ) = 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_l start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) italic_d italic_t .(25)

We can plug in the result we obtained for the distribution of length of linear chains Eq.(23) to yield

nlr(t)superscriptsubscript𝑛𝑙𝑟𝑡\displaystyle n_{l}^{r}(t\to\infty)italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( italic_t → ∞ )=2κ0lμ0t2/(1λ)𝒢(lt1/(1λ))𝑑tabsent2subscript𝜅0superscript𝑙𝜇superscriptsubscript0superscript𝑡21𝜆𝒢𝑙superscript𝑡11𝜆differential-d𝑡\displaystyle=2\kappa_{0}l^{\mu}\int_{0}^{\infty}t^{-2/(1-\lambda)}\mathcal{G}%\left(\dfrac{l}{t^{1/(1-\lambda)}}\right)dt= 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_l start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_t start_POSTSUPERSCRIPT - 2 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT caligraphic_G ( divide start_ARG italic_l end_ARG start_ARG italic_t start_POSTSUPERSCRIPT 1 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT end_ARG ) italic_d italic_t
=2κ0lμ(1λ)l(1+λ)0xλ𝒢(x)𝑑xabsent2subscript𝜅0superscript𝑙𝜇1𝜆superscript𝑙1𝜆superscriptsubscript0superscript𝑥𝜆𝒢𝑥differential-d𝑥\displaystyle=2\kappa_{0}l^{\mu}(1-\lambda)l^{-(1+\lambda)}\int_{0}^{\infty}x^%{-\lambda}\mathcal{G}(x)dx= 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_l start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ( 1 - italic_λ ) italic_l start_POSTSUPERSCRIPT - ( 1 + italic_λ ) end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT - italic_λ end_POSTSUPERSCRIPT caligraphic_G ( italic_x ) italic_d italic_x(26)

where we defined x=l/t1/(1λ)𝑥𝑙superscript𝑡11𝜆x=l/t^{1/(1-\lambda)}italic_x = italic_l / italic_t start_POSTSUPERSCRIPT 1 / ( 1 - italic_λ ) end_POSTSUPERSCRIPT. Thus, the number density of polymers that are converted into rings over infinite time is

nlr=2κ0(1λ)lμ1λ0xλ𝒢(x)𝑑x.superscriptsubscript𝑛𝑙𝑟2subscript𝜅01𝜆superscript𝑙𝜇1𝜆superscriptsubscript0superscript𝑥𝜆𝒢𝑥differential-d𝑥n_{l}^{r\infty}=2\kappa_{0}(1-\lambda)l^{\mu-1-\lambda}\int_{0}^{\infty}x^{%\lambda}\mathcal{G}(x)dx\,.italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r ∞ end_POSTSUPERSCRIPT = 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 - italic_λ ) italic_l start_POSTSUPERSCRIPT italic_μ - 1 - italic_λ end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT caligraphic_G ( italic_x ) italic_d italic_x .(27)

Since λ<1𝜆1\lambda<1italic_λ < 1 and assuming the 𝒢(x)=𝒪(1)𝒢𝑥𝒪1\mathcal{G}(x)=\mathcal{O}(1)caligraphic_G ( italic_x ) = caligraphic_O ( 1 ) when x0𝑥0x\to 0italic_x → 0, the integral converges at 0. For convergence of this integral at \infty we also require that the scaling function decays faster than xλ1superscript𝑥𝜆1x^{\lambda-1}italic_x start_POSTSUPERSCRIPT italic_λ - 1 end_POSTSUPERSCRIPT.

Assuming this functional form for the distribution of ring lengths at infinite time, we now compute the total average mass transformed into rings at infinite time as

Mringssuperscriptsubscript𝑀rings\displaystyle M_{\text{rings}}^{\infty}italic_M start_POSTSUBSCRIPT rings end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT=1lnlr(t)𝑑labsentsuperscriptsubscript1𝑙superscriptsubscript𝑛𝑙𝑟𝑡differential-d𝑙\displaystyle=\int_{1}^{\infty}ln_{l}^{r\infty}(t)dl= ∫ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_l italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r ∞ end_POSTSUPERSCRIPT ( italic_t ) italic_d italic_l
=2κ0(1λ)0xλ𝒢(x)𝑑x1lμλ𝑑l.absent2subscript𝜅01𝜆superscriptsubscript0superscript𝑥𝜆𝒢𝑥differential-d𝑥superscriptsubscript1superscript𝑙𝜇𝜆differential-d𝑙\displaystyle=2\kappa_{0}(1-\lambda)\int_{0}^{\infty}x^{-\lambda}\mathcal{G}(x%)dx\int_{1}^{\infty}l^{\mu-\lambda}dl\,.= 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( 1 - italic_λ ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT - italic_λ end_POSTSUPERSCRIPT caligraphic_G ( italic_x ) italic_d italic_x ∫ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_l start_POSTSUPERSCRIPT italic_μ - italic_λ end_POSTSUPERSCRIPT italic_d italic_l .(28)

The convergence of this integral requires that λμ>1𝜆𝜇1\lambda-\mu>1italic_λ - italic_μ > 1 and in this case we get

Mrings=2κ01λλμ10xλ𝒢(x)𝑑x.superscriptsubscript𝑀rings2subscript𝜅01𝜆𝜆𝜇1superscriptsubscript0superscript𝑥𝜆𝒢𝑥differential-d𝑥M_{\text{rings}}^{\infty}=2\kappa_{0}\dfrac{1-\lambda}{\lambda-\mu-1}\int_{0}^%{\infty}x^{-\lambda}\mathcal{G}(x)dx\,.italic_M start_POSTSUBSCRIPT rings end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT = 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG 1 - italic_λ end_ARG start_ARG italic_λ - italic_μ - 1 end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT - italic_λ end_POSTSUPERSCRIPT caligraphic_G ( italic_x ) italic_d italic_x .(29)

From this equation, we see that the fraction of mass in rings at infinite time Mrings/M0superscriptsubscript𝑀ringssubscript𝑀0M_{\text{rings}}^{\infty}/M_{0}italic_M start_POSTSUBSCRIPT rings end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT / italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT converges to a finite value proportional to κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (and hence <1absent1<1< 1 at small κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT).

With this calculation, we have thus shown that at small enough but non-zero κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, the fraction of mass turning into rings is finite if λμ=να+4ν>1𝜆𝜇𝜈𝛼4𝜈1\lambda-\mu=\nu-\alpha+4\nu>1italic_λ - italic_μ = italic_ν - italic_α + 4 italic_ν > 1 or ν>α/5𝜈𝛼5\nu>\alpha/5italic_ν > italic_α / 5 which is valid for any type of polymer in the non-entangled (α=1𝛼1\alpha=1italic_α = 1) regime.This implies that in this regime we expect the cyclisation probability to decay fast enough and cannot prevent the runaway of the M0Mringssubscript𝑀0superscriptsubscript𝑀ringsM_{0}-M_{\text{rings}}^{\infty}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_M start_POSTSUBSCRIPT rings end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT mass into linear chains that keep growing in time.

Consistently with this, in both MD and MC simulations, we never observe the formation of rings larger than 10 initial monomers. As shown here using asymptotic theory the mass fraction of linear polymers goes to a finite limit at t𝑡t\rightarrow\inftyitalic_t → ∞ in a thermodynamic system. We find that the key condition to ensure the existence of runaway transition is that the cyclisation rate k0=κ0lμsubscript𝑘0subscript𝜅0superscript𝑙𝜇k_{0}=\kappa_{0}l^{\mu}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_l start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT decays strongly enough. More specifically, we require the exponent μ𝜇\muitalic_μ to be μ=4ν<4α/5𝜇4𝜈4𝛼5\mu=-4\nu<-4\alpha/5italic_μ = - 4 italic_ν < - 4 italic_α / 5 or ν>α/5𝜈𝛼5\nu>\alpha/5italic_ν > italic_α / 5. This condition is always met in the Rouse unentangled (α=1𝛼1\alpha=1italic_α = 1) regime,provided that the polymers are not fully collapsed (ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3). This argument establishes the existence of a runaway transition in the limit of large time and at large enough concentrations c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT.

III.3.2 Direct Simulation Monte Carlo simulations of irreversible condensation

To formally address the existence of a true runaway transition in the thermodynamic limit, we compute the fraction of monomers belonging to linear species in systems of increasing size. To perform this calculation, we employ Direct Simulation Monte Carlo[23, 24, 25, 26] to solve the Smoluchowski equation in systems with up to 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT chains. We run the DSMC code until it has reacted all ends apart from 2 and compute the average length of the linear population of chains, llin(t1)delimited-⟨⟩subscript𝑙𝑙𝑖𝑛much-greater-than𝑡1\langle l_{lin}(t\gg 1)\rangle⟨ italic_l start_POSTSUBSCRIPT italic_l italic_i italic_n end_POSTSUBSCRIPT ( italic_t ≫ 1 ) ⟩. As shown in Fig.6c, our MD simulations show that at κ=1𝜅1\kappa=1italic_κ = 1 the GCC displays a change in scaling, growing as GCCκ1c/csimilar-to𝐺𝐶𝐶superscript𝜅1similar-to𝑐superscript𝑐GCC\sim\kappa^{-1}\sim c/c^{*}italic_G italic_C italic_C ∼ italic_κ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∼ italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT as κ0𝜅0\kappa\to 0italic_κ → 0 suggesting that a qualitative change in behaviour takes place around κ1similar-to-or-equals𝜅1\kappa\simeq 1italic_κ ≃ 1. In Fig.6d, we also plot the number averaged chain length at an arbitrarily large time when the DSMC code has evolved the system as long as possible and has generated only a single linear chain. Fig.6d suggests that the linear-dominated regime (κ<1𝜅1\kappa<1italic_κ < 1) displays an average polymer length at a large reaction time that scales as l(t1)/l0κ1c/csimilar-todelimited-⟨⟩𝑙much-greater-than𝑡1subscript𝑙0superscript𝜅1similar-to𝑐superscript𝑐\langle l(t\gg 1)\rangle/l_{0}\sim\kappa^{-1}\sim c/c^{*}⟨ italic_l ( italic_t ≫ 1 ) ⟩ / italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∼ italic_κ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∼ italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Additionally, the fraction of mass “lost” in forming rings grows as Mringsκsimilar-tosubscript𝑀𝑟𝑖𝑛𝑔𝑠𝜅M_{rings}\sim\kappaitalic_M start_POSTSUBSCRIPT italic_r italic_i italic_n italic_g italic_s end_POSTSUBSCRIPT ∼ italic_κ and is thus negligible for small enough κ𝜅\kappaitalic_κ (Fig.6e). Finally, as shown in Fig.6f, the mean length of the linear chains llin(t1)delimited-⟨⟩subscript𝑙𝑙𝑖𝑛much-greater-than𝑡1\langle l_{lin}(t\gg 1)\rangle⟨ italic_l start_POSTSUBSCRIPT italic_l italic_i italic_n end_POSTSUBSCRIPT ( italic_t ≫ 1 ) ⟩ displays a plateau for κ1less-than-or-similar-to𝜅1\kappa\lesssim 1italic_κ ≲ 1, which grows with the system size, strongly indicating a true runaway transition at the critical value κ1similar-to-or-equals𝜅1\kappa\simeq 1italic_κ ≃ 1 or c/c0.10.2similar-to-or-equals𝑐superscript𝑐0.10.2c/c^{*}\simeq 0.1-0.2italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≃ 0.1 - 0.2.

III.4 Dynamics and Rheology

To test the consequences of the runaway transition on the dynamics and rheology of the system, we perform microrheology experiments and compute dynamics in MD simulations. DNA microrheology is well established and the effects of DNA concentration, length and topology on microrheology have been studied in the past[43, 44, 45, 46, 47, 48, 49]. Here, we perform microrheology by tracking 800800800800 nm PVP-coated polystyrene beads added in a solution of DNA that has been treated with either 40U T4 ligase for a week (and thus to full extent of reaction) or with buffer for a week (control) at different initial concentrations. We ran a small aliquot of the samples in a gel and observed that indeed at c/c0.1similar-to-or-equals𝑐superscript𝑐0.1c/c^{*}\simeq 0.1italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≃ 0.1 the fraction of linear chains overcome the rings at large times (Fig.7a-b).

At low concentrations, our microrheology shows that the MSD of the tracer particles is unaffected by DNA ligation (Fig.7c). On the contrary, for c/c0.1𝑐superscript𝑐0.1c/c^{*}\geq 0.1italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ 0.1, we find that the MSDs of the tracers in the ligated systems are much slower and display a stronger subdiffusive behaviour than the control (Fig.7c). From the MSD, we extract the large-time diffusion coefficient D𝐷Ditalic_D of the tracers and the effective viscosity of the sample via the Stokes-Einstein equation[31]. The plot of the normalised viscosity (Fig.7d) suggests that a dynamical transition takes place around c/c=0.10.2𝑐superscript𝑐0.10.2c/c^{*}=0.1-0.2italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = 0.1 - 0.2 (or κ12similar-to-or-equals𝜅12\kappa\simeq 1-2italic_κ ≃ 1 - 2) which matches the structural runaway transition seen before (Fig.6). After the transition, the viscosity increases exponentially with the concentration (see inset of Fig.7d). This suggests a relaxation process dominated by end-retraction[34], possibly due to the threading of very long linear chains through small rings[50, 51, 52, 53, 54] or pseudo-knotted parts of their own extremely long contour[55, 56]. We note that, especially at large c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, the ligated solution is extremely elastic and the passive tracers do not display a freely diffusive behaviour even after a lag time of ten minutes. We thus argue that the reported η/η0𝜂subscript𝜂0\eta/\eta_{0}italic_η / italic_η start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT may be lower bounds at large c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT, which would render the transition even more dramatic. All this implies that, intriguingly, near the transition c/c0.1similar-to-or-equals𝑐superscript𝑐0.1c/c^{*}\simeq 0.1italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≃ 0.1, systems prepared at similar concentrations may display extremely different rheology at large condensation times. To further support the existence of a qualitative change in the dynamics, we compute the values of viscosity obtained in MD simulations through the diffusion coefficient of the centre of mass of chains that have been ligated for long time at different initial concentrations (see red circles in Fig.7d). One can appreciate that our simulations also suggest a qualitative difference in dynamics for c/c0.1𝑐superscript𝑐0.1c/c^{*}\geq 0.1italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≥ 0.1, albeit the transition appears less dramatic than in experiments; we argue that this may be due to finite size effects present in MD simulations.

Runaway Transition in Irreversible Polymer Condensation with cyclisation (7)

IV Conclusion

We have studied a system of linear polymers undergoing irreversible condensation in competition with cyclisation. We have shown that the key adimensional parameter controlling growth kinetics is κ=2κ0/(n0κ1)𝜅2subscript𝜅0subscript𝑛0subscript𝜅1\kappa=2\kappa_{0}/(n_{0}\kappa_{1})italic_κ = 2 italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / ( italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ); naturally interpreted as the number of rings formed for any one dimerisation. At large concentrations (or κ<1𝜅1\kappa<1italic_κ < 1) dimerisation is kinetically favoured and drives the growth of linear chains. While growth disfavours cyclisation, it also reduces the number of available reactive ends and the annealing rate of the chains (see Eq.(8)), disfavouring further growth. Despite this, we discover that the net result of this kinetic competition is a runaway transition for κ<1𝜅1\kappa<1italic_κ < 1 if the cyclisation rate decays strongly enough with polymer length, i.e. with ν>α/5𝜈𝛼5\nu>\alpha/5italic_ν > italic_α / 5, with ν𝜈\nuitalic_ν the metric exponent (typically 1/2 for random walks and 0.588 for self-avoiding walks) and α𝛼\alphaitalic_α the dynamics exponent (typically 1 for Rouse and 2 for reptative dynamics). In these conditions, the fraction of monomers transformed into rings is finite, thus leaving the rest of the monomers available to form a permanently growing linear chain which then drive a runaway reaction.

We also discover that the runaway transition has deep consequences on the rheology, and triggers an exponential increase for κ<1𝜅1\kappa<1italic_κ < 1 (or c/c>0.1𝑐superscript𝑐0.1c/c^{*}>0.1italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT > 0.1).Our results suggest that it may be possible to tune the final topological composition of ligated systems by judiciously choosing c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. For instance, the most likely regime to form large rings and ring-linear blends[51, 52] is near the transition c/c0.1similar-to-or-equals𝑐superscript𝑐0.1c/c^{*}\simeq 0.1italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ≃ 0.1. Mixing polymer families with different reactive ends further enhances the designability as it introduces different csuperscript𝑐c^{*}italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for each family. Our results can be used to optimise the conditions for DNA engineering, e.g., transfection vectors[2] ought to be ligated at c/c<0.1𝑐superscript𝑐0.1c/c^{*}<0.1italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT < 0.1 whereas synthetic chromosomes assemblies[57] at large c/c𝑐superscript𝑐c/c^{*}italic_c / italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. Finally, it may be possible to couple dissipative DNA breakage reactions[48, 58, 59] with ATP-consuming ligation to create dense solutions of self-sustained topologically active viscoelastic fluids which would be an interesting active fluid to investigate in the future.

Acknowledgements.

DM acknowledges the support of the Royal Society via a University Research Fellowship. This project has received support from European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 947918 to DM and No 677532 to ML). The authors acknowledge insightful discussions with Daan Noordermeer and Antonio Valdes who also kindly gifted us with the 1288 plasmid. Source codes are available at https://git.ecdf.ed.ac.uk/taplab/dna-ligation.git. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Appendix A Topology reconstruction algorithm

We will refer to the Topology Reconstruction code from now on as TR. The code takes as input the instantaneous trajectory and bond list from LAMMPS and checks for newly formed linear and ring chains. The output of the Python code is a file containing the number and length of linear chains that have formed in a given simulation time step. Similar files are produced for the ring chains. These files are then used to calculate the average length and the number of linear/ring chain figures.

The starting point of the TR algorithm is an array 𝐛𝐛\mathbf{b}bold_b of size Nb×2subscript𝑁𝑏2N_{b}\times 2italic_N start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT × 2; each row bi=(id1,id2)subscript𝑏𝑖𝑖subscript𝑑1𝑖subscript𝑑2b_{i}=(id_{1},id_{2})italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ( italic_i italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) represents the IDs of atoms that are bonded within the system:

𝐛=[id1id2id3id4idNn1idNn],𝐛matrix𝑖subscript𝑑1𝑖subscript𝑑2𝑖subscript𝑑3𝑖subscript𝑑4𝑖subscript𝑑subscript𝑁𝑛1𝑖subscript𝑑subscript𝑁𝑛\mathbf{b}=\begin{bmatrix}id_{1}&id_{2}\\id_{3}&id_{4}\\\vdots&\vdots\\id_{N_{n-1}}&id_{N_{n}}\end{bmatrix}\,,bold_b = [ start_ARG start_ROW start_CELL italic_i italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL italic_i italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_i italic_d start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_CELL start_CELL italic_i italic_d start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_i italic_d start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL italic_i italic_d start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ,

Since not all particles are linked together, some do not appear in the array 𝐛𝐛\mathbf{b}bold_b. To avoid operations with large sparse arrays, the matrix 𝐛𝐛\mathbf{b}bold_b is mapped to 𝐛~~𝐛\mathbf{\tilde{b}}over~ start_ARG bold_b end_ARG that contains only indexes from 1111 to the maximum number of atoms connected M:𝐛𝐛~:𝑀𝐛~𝐛M:\mathbf{b}\to\mathbf{\tilde{b}}italic_M : bold_b → over~ start_ARG bold_b end_ARG.

The next step of the TR algorithm is to create a connectivity matrix 𝐂𝐂\mathbf{C}bold_C based on the list 𝐛~~𝐛\mathbf{\tilde{b}}over~ start_ARG bold_b end_ARG. Each row of 𝐂𝐂\mathbf{C}bold_C represents an atom index and consists of three components 𝐂(idi,:)=(idi1,idi+1,flag)𝐂𝑖subscript𝑑𝑖:𝑖subscript𝑑𝑖1𝑖subscript𝑑𝑖1𝑓𝑙𝑎𝑔\mathbf{C}(id_{i},:)=(id_{i-1},id_{i+1},flag)bold_C ( italic_i italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , : ) = ( italic_i italic_d start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_i italic_d start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT , italic_f italic_l italic_a italic_g ). Since in our case a particle can be linked with two more particles the first two components of each row idi1,idi+1𝑖subscript𝑑𝑖1𝑖subscript𝑑𝑖1id_{i-1},id_{i+1}italic_i italic_d start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT , italic_i italic_d start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT represent the connections of particle idi𝑖subscript𝑑𝑖id_{i}italic_i italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (note that idi1𝑖subscript𝑑𝑖1id_{i-1}italic_i italic_d start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT and idi+1𝑖subscript𝑑𝑖1id_{i+1}italic_i italic_d start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT are not necessarily consecutive in 1D but can be any other particle bonded to particle i𝑖iitalic_i). The third component, flag𝑓𝑙𝑎𝑔flagitalic_f italic_l italic_a italic_g, takes only the values 0,101{0,1}0 , 1 and accounts for the particles idi𝑖subscript𝑑𝑖id_{i}italic_i italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT that already belong to a polymer chain. The flag column of 𝐂𝐂\mathbf{C}bold_C is initialised to zeros. During the reading process of the connectivity matrix, the algorithm switches the flags to 1 of the particles that are already considered to belong in a chain. Rings are extracted in the same manner and a ring is found if the current atom index is the same as the starting atom index. This reading process outputs Ncsubscript𝑁𝑐N_{c}italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT arrays that have different lengths and each of them contains the particle (mapped) ids that are connected in a polymer chain. The final step of the TR algorithm is to map the atom indexed back to the original ones: M1:𝐛~𝐛:superscript𝑀1~𝐛𝐛M^{-1}:\mathbf{\tilde{b}}\to\mathbf{b}italic_M start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : over~ start_ARG bold_b end_ARG → bold_b. This algorithm is very generic and can be applied also in cases where the atoms are not initially in polymers as in our case, but rather individual atoms that can connect during the simulation.

Appendix B Description of the Monte Carlo step

In this paragraph, we will describe the single Monte Carlo (MC) step, which is repeated a large number of times during the numerical resolution of Eq.(5) performed using the DSMC algorithm. With reference to Eq.(5), we define nfVi=1nisubscript𝑛𝑓𝑉superscriptsubscript𝑖1subscript𝑛𝑖n_{f}\equiv V\sum_{i=1}^{\infty}n_{i}italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ≡ italic_V ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (total number of chains). Before the start of the simulation, we give an estimate of the maximum annealing rate kmaxsubscript𝑘maxk_{\text{max}}italic_k start_POSTSUBSCRIPT max end_POSTSUBSCRIPT and of the maximum cyclisation rate k0maxsuperscriptsubscript𝑘0maxk_{0}^{\text{max}}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT. The exactness of the algorithm does not depend on this initial choice, however, choosing values that are too far from the actual maximum rates can lead to a reduced efficiency[23].

During every MC step, we either attempt to perform a ligation reaction (with probability p𝑝pitalic_p) or a cyclisation one (with probability 1p1𝑝1-p1 - italic_p). The value of p𝑝pitalic_p is calculated initially and then updated during the simulation in such a way that the average number densities n(l)𝑛𝑙n(l)italic_n ( italic_l ) satisfy (5). At the beginning of each MC step, p𝑝pitalic_p is evaluated as

p1=1+2Nkomax(nf1)nkmax.superscript𝑝112𝑁superscriptsubscript𝑘𝑜maxsubscript𝑛𝑓1𝑛subscript𝑘maxp^{-1}=1+\frac{2Nk_{o}^{\text{max}}}{(n_{f}-1)nk_{\text{max}}}\,.italic_p start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = 1 + divide start_ARG 2 italic_N italic_k start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) italic_n italic_k start_POSTSUBSCRIPT max end_POSTSUBSCRIPT end_ARG .(30)

We will show below that this choice also guarantees that the simulation samples the correct number of cyclisation and ligation events per unit volume and unit time as required by Eq.(5).

We define a waiting time variable that is set to zero at the beginning of the simulation. After each reaction, a waiting time increment is generated. These increments are also chosen to guarantee the correct number of ligation and fragmentation reactions per unit of time/volume, as detailed below. We can now describe the MC step, during which the following actions are performed:

  1. 1.

    We evaluate the probability of annealing p𝑝pitalic_p according to Eq.(30). The explicit form of p𝑝pitalic_p, Eq.(30), will be discussed in detail below.

  2. 2.

    We pick a random number 0r10𝑟10\leq r\leq 10 ≤ italic_r ≤ 1 from a uniform distribution. If rp𝑟𝑝r\leq pitalic_r ≤ italic_p, we attempt a ligation event:

    1. (a)

      We pick a pair of elements of the array 𝐦𝐦\mathbf{m}bold_m, denoted α,β𝛼𝛽\alpha,\betaitalic_α , italic_β at random. Since there are nf(nf1)subscript𝑛𝑓subscript𝑛𝑓1n_{f}(n_{f}-1)italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) ordered pairs of chains, the probability of picking a specific pair is [nf(nf1)]1superscriptdelimited-[]subscript𝑛𝑓subscript𝑛𝑓11[n_{f}(n_{f}-1)]^{-1}[ italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Let the length associated with these elements be mα=isubscript𝑚𝛼𝑖m_{\alpha}=iitalic_m start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_i and mβ=jsubscript𝑚𝛽𝑗m_{\beta}=jitalic_m start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT = italic_j.

    2. (b)

      We evaluate the ligation rate k1(i,j)subscript𝑘1𝑖𝑗k_{1}(i,j)italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) for the two chains. If k1(i,j)>kmaxsubscript𝑘1𝑖𝑗subscript𝑘maxk_{1}(i,j)>k_{\text{max}}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) > italic_k start_POSTSUBSCRIPT max end_POSTSUBSCRIPT, we set k1max=k1(i,j)superscriptsubscript𝑘1maxsubscript𝑘1𝑖𝑗k_{1}^{\text{max}}=k_{1}(i,j)italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT = italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) and return to (1). Otherwise, we continue.

    3. (c)

      We pick another random number rsuperscript𝑟r^{\prime}italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, and perform the ligation if rk1(i,j)/k1maxsuperscript𝑟subscript𝑘1𝑖𝑗superscriptsubscript𝑘1maxr^{\prime}\leq k_{1}(i,j)/k_{1}^{\text{max}}italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) / italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT. If ligation is unsuccessful, we return to (1). Otherwise, we continue.

    4. (d)

      We increment the waiting time by Δti,jlig=2ANnf(nf1)nkijΔsubscriptsuperscript𝑡lig𝑖𝑗2𝐴𝑁subscript𝑛𝑓subscript𝑛𝑓1𝑛subscript𝑘𝑖𝑗\Delta t^{\text{lig}}_{i,j}=\frac{2AN}{n_{f}(n_{f}-1)nk_{ij}}roman_Δ italic_t start_POSTSUPERSCRIPT lig end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = divide start_ARG 2 italic_A italic_N end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) italic_n italic_k start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_ARG. Here A𝐴Aitalic_A is a parameter, the only condition on which is that it must be between 00 and 1111, as we will discuss in more detail below.

    5. (e)

      After incrementing the waiting time, we update 𝐟𝐟\mathbf{f}bold_f by setting mα=0subscript𝑚𝛼0m_{\alpha}=0italic_m start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = 0 and mβ=i+jsubscript𝑚𝛽𝑖𝑗m_{\beta}=i+jitalic_m start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT = italic_i + italic_j.

  3. 3.

    If r>p𝑟𝑝r>pitalic_r > italic_p, we attempt a cyclisation event:

    1. (a)

      We pick a chain γ𝛾\gammaitalic_γ at random with probability nf1superscriptsubscript𝑛𝑓1n_{f}^{-1}italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Let mγ=lsubscript𝑚𝛾𝑙m_{\gamma}=litalic_m start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT = italic_l.

    2. (b)

      We evaluate the cyclisation rate k0(l)subscript𝑘0𝑙k_{0}(l)italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ). If k0(l)>k0maxsubscript𝑘0𝑙superscriptsubscript𝑘0maxk_{0}(l)>k_{0}^{\text{max}}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ) > italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT, set k0max=k0(l)superscriptsubscript𝑘0maxsubscript𝑘0𝑙k_{0}^{\text{max}}=k_{0}(l)italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT = italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ) and return to (1). Otherwise, we continue.

    3. (c)

      We extract another random number 0r10superscript𝑟10\leq r^{\prime}\leq 10 ≤ italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ 1 from a uniform distribution, and perform cyclisation if rk0(l)/k0maxsuperscript𝑟subscript𝑘0𝑙superscriptsubscript𝑘0maxr^{\prime}\leq k_{0}(l)/k_{0}^{\text{max}}italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ) / italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT. If cyclisation is unsuccessful, we return to (1). Otherwise, we continue.

    4. (d)

      We increment the waiting time by Δtlcyc=1Anfko(l)Δsubscriptsuperscript𝑡cyc𝑙1𝐴subscript𝑛𝑓subscript𝑘𝑜𝑙\Delta t^{\text{cyc}}_{l}=\frac{1-A}{n_{f}k_{o}(l)}roman_Δ italic_t start_POSTSUPERSCRIPT cyc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = divide start_ARG 1 - italic_A end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT ( italic_l ) end_ARG, with A𝐴Aitalic_A defined above in step (2).

    5. (e)

      We record the value of l𝑙litalic_l in 𝐫𝐫\mathbf{r}bold_r and set mγ=0subscript𝑚𝛾0m_{\gamma}=0italic_m start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT = 0.

We now prove that the definitions of p𝑝pitalic_p (Eq.(30)), the waiting time increments Δti,jligΔsubscriptsuperscript𝑡lig𝑖𝑗\Delta t^{\text{lig}}_{i,j}roman_Δ italic_t start_POSTSUPERSCRIPT lig end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT (for ligation) and Δti,kicycΔsubscriptsuperscript𝑡cyc𝑖𝑘𝑖\Delta t^{\text{cyc}}_{i,k-i}roman_Δ italic_t start_POSTSUPERSCRIPT cyc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_k - italic_i end_POSTSUBSCRIPT (for cyclisation) give several ligation and cyclisation events per unit time which is consistent with the Smoluchowski equation Eq.(5). Over a single MC step, the mean number of ligation events involving the ordered pair of filaments (α,β)𝛼𝛽(\alpha,\beta)( italic_α , italic_β ) is

#Lα,βpnf(nf1)k1(mα,mβ)k1max.delimited-⟨⟩#subscript𝐿𝛼𝛽𝑝subscript𝑛𝑓subscript𝑛𝑓1subscript𝑘1subscript𝑚𝛼subscript𝑚𝛽superscriptsubscript𝑘1max\langle\#L_{\alpha,\beta}\rangle\equiv\frac{p}{n_{f}(n_{f}-1)}\frac{k_{1}(m_{%\alpha},m_{\beta})}{k_{1}^{\text{max}}}\,.⟨ # italic_L start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT ⟩ ≡ divide start_ARG italic_p end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) end_ARG divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ) end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG .(31)

We note that in the algorithm we consider (mα,mβ)subscript𝑚𝛼subscript𝑚𝛽(m_{\alpha},m_{\beta})( italic_m start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ) as an ordered pair, and thus in (31) we consider the reaction (i,j)l𝑖𝑗𝑙(i,j)\to l( italic_i , italic_j ) → italic_l as distinct from (j,i)l𝑗𝑖𝑙(j,i)\to l( italic_j , italic_i ) → italic_l. The mean number of ligation events involving any two chains with lengths i,j𝑖𝑗i,jitalic_i , italic_j can be obtained by multiplying the above quantity by 2(1δij/2)V2ninj21subscript𝛿𝑖𝑗2superscript𝑉2subscript𝑛𝑖subscript𝑛𝑗2(1-\delta_{ij}/2)V^{2}n_{i}n_{j}2 ( 1 - italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT / 2 ) italic_V start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT. The factor 2(1δij/2)21subscript𝛿𝑖𝑗22(1-\delta_{ij}/2)2 ( 1 - italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT / 2 ) takes into account the fact that, as mentioned above, for ij𝑖𝑗i\neq jitalic_i ≠ italic_j, there are two ways to perform the ligation, whereas for i=j𝑖𝑗i=jitalic_i = italic_j there is only one. The factor V2ninjsuperscript𝑉2subscript𝑛𝑖subscript𝑛𝑗V^{2}n_{i}n_{j}italic_V start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT is the product of the volume fractions of filaments of lengths i𝑖iitalic_i and j𝑗jitalic_j. We thus have

2V2ninj(1δij2)×pnf(nf1)k1(i,j)k1max=2superscript𝑉2subscript𝑛𝑖subscript𝑛𝑗1subscript𝛿𝑖𝑗2𝑝subscript𝑛𝑓subscript𝑛𝑓1subscript𝑘1𝑖𝑗superscriptsubscript𝑘1maxabsent\displaystyle 2V^{2}n_{i}n_{j}\left(1-\frac{\delta_{ij}}{2}\right)\times\frac{%p}{n_{f}(n_{f}-1)}\frac{k_{1}(i,j)}{k_{1}^{\text{max}}}=2 italic_V start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( 1 - divide start_ARG italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ) × divide start_ARG italic_p end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) end_ARG divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG =
Vk1(i,j)ninj(1δij2)Δt,𝑉subscript𝑘1𝑖𝑗subscript𝑛𝑖subscript𝑛𝑗1subscript𝛿𝑖𝑗2Δ𝑡\displaystyle Vk_{1}(i,j)n_{i}n_{j}\left(1-\frac{\delta_{ij}}{2}\right)\Delta t\,,italic_V italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) italic_n start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( 1 - divide start_ARG italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ) roman_Δ italic_t ,(32)

where we have equated the mean number of ligation events involving any two chains with lengths i,j𝑖𝑗i,jitalic_i , italic_j to the value required by the Smoluchowski equation. Recalling that n=N/V𝑛𝑁𝑉n=N/Vitalic_n = italic_N / italic_V, we thus find

Δt=2pNnf(nf1)nk1max.Δ𝑡2𝑝𝑁subscript𝑛𝑓subscript𝑛𝑓1𝑛superscriptsubscript𝑘1max\Delta t=\frac{2pN}{n_{f}(n_{f}-1)nk_{1}^{\text{max}}}\,.roman_Δ italic_t = divide start_ARG 2 italic_p italic_N end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) italic_n italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG .(33)

Eq.(33) relates the time interval ΔtΔ𝑡\Delta troman_Δ italic_t to the probability of ligation. We will now obtain a second equality involving p𝑝pitalic_p and ΔtΔ𝑡\Delta troman_Δ italic_t, which will allow us to prove that the expression Eq.(30) for p𝑝pitalic_p guarantees the correct number of ligation and cyclisation events per unit time.

The mean number of cyclisation events involving chains γ𝛾\gammaitalic_γ is

#Cγ(1p)k0(mγ)nfk0max.delimited-⟨⟩#subscript𝐶𝛾1𝑝subscript𝑘0subscript𝑚𝛾subscript𝑛𝑓superscriptsubscript𝑘0max\langle\#C_{\gamma}\rangle\equiv\frac{(1-p)k_{0}(m_{\gamma})}{n_{f}k_{0}^{%\text{max}}}\,.⟨ # italic_C start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ⟩ ≡ divide start_ARG ( 1 - italic_p ) italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG .(34)

To obtain the mean number of cyclisations of a generic llimit-from𝑙l-italic_l -mer we need to multiply this quantity by Vnl𝑉subscript𝑛𝑙Vn_{l}italic_V italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT, i.e., the volume fraction of filaments of length l𝑙litalic_l. Equating this quantity to the expected number of rings formed in a time interval ΔtΔ𝑡\Delta troman_Δ italic_t we obtain

Vnl×(1p)k0(l)nfk0max=k0(l)nlVΔt,𝑉subscript𝑛𝑙1𝑝subscript𝑘0𝑙subscript𝑛𝑓superscriptsubscript𝑘0maxsubscript𝑘0𝑙subscript𝑛𝑙𝑉Δ𝑡Vn_{l}\times\frac{(1-p)k_{0}(l)}{n_{f}k_{0}^{\text{max}}}=k_{0}(l)n_{l}V\Deltat\,,italic_V italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT × divide start_ARG ( 1 - italic_p ) italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ) end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG = italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ) italic_n start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_V roman_Δ italic_t ,(35)

and hence

Δt1pnfkomax.Δ𝑡1𝑝subscript𝑛𝑓superscriptsubscript𝑘𝑜max\Delta t\equiv\frac{1-p}{n_{f}k_{o}^{\text{max}}}\,.roman_Δ italic_t ≡ divide start_ARG 1 - italic_p end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG .(36)

By equating the two expressions for ΔtΔ𝑡\Delta troman_Δ italic_t, Eq.(33) and Eq.(36), we find Eq.(30). We have thus proven that the latter is the correct expression of p𝑝pitalic_p, which gives the correct number of cyclisation and ligation events per unit time and unit volume, as required by the Smoluchowski equation.

Finally, we will prove below that the constants A𝐴Aitalic_A and 1A1𝐴1-A1 - italic_A introduced when calculating the waiting time increments are consistent with Eq.(33) and Eq.(36). To show this, it is sufficient to observe that the total time increment during an MC step is:

ΔtΔ𝑡\displaystyle\Delta troman_Δ italic_t=0α<βnf1#Lα,βΔtmα,mβlig+i=1mγ1#CγΔtmγcycabsentsubscript0𝛼𝛽subscript𝑛𝑓1delimited-⟨⟩#subscript𝐿𝛼𝛽Δsubscriptsuperscript𝑡ligsubscript𝑚𝛼subscript𝑚𝛽superscriptsubscript𝑖1subscript𝑚𝛾1delimited-⟨⟩#subscript𝐶𝛾Δsubscriptsuperscript𝑡cycsubscript𝑚𝛾\displaystyle=\sum_{0\leq\alpha<\beta\leq n_{f}-1}\langle\#L_{\alpha,\beta}%\rangle\Delta t^{\text{lig}}_{m_{\alpha},m_{\beta}}+\sum_{i=1}^{m_{\gamma}-1}%\langle\#C_{\gamma}\rangle\Delta t^{\text{cyc}}_{m_{\gamma}}= ∑ start_POSTSUBSCRIPT 0 ≤ italic_α < italic_β ≤ italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT ⟨ # italic_L start_POSTSUBSCRIPT italic_α , italic_β end_POSTSUBSCRIPT ⟩ roman_Δ italic_t start_POSTSUPERSCRIPT lig end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT end_POSTSUBSCRIPT + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT ⟨ # italic_C start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ⟩ roman_Δ italic_t start_POSTSUPERSCRIPT cyc end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_POSTSUBSCRIPT
=0α<βnf1[pkmα,mβnf(nf1)kmax][2ANnf(nf1)nkmα,mβ]absentsubscript0𝛼𝛽subscript𝑛𝑓1delimited-[]𝑝subscript𝑘subscript𝑚𝛼subscript𝑚𝛽subscript𝑛𝑓subscript𝑛𝑓1subscript𝑘maxdelimited-[]2𝐴𝑁subscript𝑛𝑓subscript𝑛𝑓1𝑛subscript𝑘subscript𝑚𝛼subscript𝑚𝛽\displaystyle=\sum_{0\leq\alpha<\beta\leq n_{f}-1}\left[\frac{pk_{m_{\alpha},m%_{\beta}}}{n_{f}(n_{f}-1)k_{\text{max}}}\right]\left[\frac{2AN}{n_{f}(n_{f}-1)%nk_{m_{\alpha},m_{\beta}}}\right]= ∑ start_POSTSUBSCRIPT 0 ≤ italic_α < italic_β ≤ italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT [ divide start_ARG italic_p italic_k start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) italic_k start_POSTSUBSCRIPT max end_POSTSUBSCRIPT end_ARG ] [ divide start_ARG 2 italic_A italic_N end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) italic_n italic_k start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ]
+i=1mγ1[(1p)ko(l)nkomax]1Anfko(l)superscriptsubscript𝑖1subscript𝑚𝛾1delimited-[]1𝑝subscript𝑘𝑜𝑙𝑛superscriptsubscript𝑘𝑜max1𝐴subscript𝑛𝑓subscript𝑘𝑜𝑙\displaystyle\ \ \ +\sum_{i=1}^{m_{\gamma}-1}\left[\frac{(1-p)k_{o}(l)}{nk_{o}%^{\text{max}}}\right]\frac{1-A}{n_{f}k_{o}(l)}+ ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT [ divide start_ARG ( 1 - italic_p ) italic_k start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT ( italic_l ) end_ARG start_ARG italic_n italic_k start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG ] divide start_ARG 1 - italic_A end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT ( italic_l ) end_ARG
=2ApNnf(nf1)nkmax+(1A)(1p)nfkomaxabsent2𝐴𝑝𝑁subscript𝑛𝑓subscript𝑛𝑓1𝑛subscript𝑘max1𝐴1𝑝subscript𝑛𝑓superscriptsubscript𝑘𝑜max\displaystyle=\frac{2ApN}{n_{f}(n_{f}-1)nk_{\text{max}}}+\frac{(1-A)(1-p)}{n_{%f}k_{o}^{\text{max}}}= divide start_ARG 2 italic_A italic_p italic_N end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT - 1 ) italic_n italic_k start_POSTSUBSCRIPT max end_POSTSUBSCRIPT end_ARG + divide start_ARG ( 1 - italic_A ) ( 1 - italic_p ) end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_ARG

One can see that this equality is consistent with Eq.(33) and Eq.(36). We note that the algorithm samples on average the correct kinetics independently of the value of A𝐴Aitalic_A, as long as 0A10𝐴10\leq A\leq 10 ≤ italic_A ≤ 1. Here we take A=1𝐴1A=1italic_A = 1, meaning that the waiting time increment is calculated only after a successful ligation reaction, but not after a successful cyclisation reaction.

Appendix C Numerical integration of modified Smoluchowski

Solving the Smoluchowski equation to fit the data from MD simulations consists of two main parts:

  1. 1.

    We create an objective function for the lsqcurvefit (called Obj_smoluchowski) that takes as input the array of initial coefficient guess K0=(κ1,κ0)subscript𝐾0subscript𝜅1subscript𝜅0K_{0}=(\kappa_{1},\kappa_{0})italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and the time data array xdata𝑥𝑑𝑎𝑡𝑎xdataitalic_x italic_d italic_a italic_t italic_a. It returns the average length as a function of time, array ydata𝑦𝑑𝑎𝑡𝑎ydataitalic_y italic_d italic_a italic_t italic_a. In the objective function:

    1. (a)

      An array 𝐋=𝐧l0𝐋𝐧subscript𝑙0\mathbf{L}=\mathbf{n}\cdot l_{0}bold_L = bold_n ⋅ italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is initialised where n={1,2,,Nc=200}𝑛12subscript𝑁𝑐200n=\{1,2,\dots,N_{c}=200\}italic_n = { 1 , 2 , … , italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 200 } and l0=174subscript𝑙0174l_{0}=174italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 174. This represents the set of lengths that can be found in the system (recall that we initialise our MD simulations with 200 chains of 174 beads each). Also, the arrays with the number density of linear and ring chains are initialised as follows,𝐧𝐥𝟎=(Nc/vol,0,,0)1×Ncsubscript𝐧subscript𝐥0subscriptsubscript𝑁𝑐𝑣𝑜𝑙001subscript𝑁𝑐\mathbf{n_{l_{0}}}=(N_{c}/vol,0,\dots,0)_{1\times N_{c}}bold_n start_POSTSUBSCRIPT bold_l start_POSTSUBSCRIPT bold_0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ( italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT / italic_v italic_o italic_l , 0 , … , 0 ) start_POSTSUBSCRIPT 1 × italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝐧𝐫𝟎=(0,,0)1×Ncsubscript𝐧subscript𝐫0subscript001subscript𝑁𝑐\mathbf{n_{r_{0}}}=(0,\dots,0)_{1\times N_{c}}bold_n start_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT bold_0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ( 0 , … , 0 ) start_POSTSUBSCRIPT 1 × italic_N start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPTsince initially all the molecules are linear chains. Here, vol𝑣𝑜𝑙volitalic_v italic_o italic_l denotes the volume of the simulation box.

    2. (b)

      for t𝑡titalic_t = {1 to simulation final step time} docall (𝐧𝐋𝐧𝐞𝐰,𝐧𝐑𝐧𝐞𝐰)=exEuler_smoluchowski(𝐧𝐋,𝐧𝐑,K)subscript𝐧subscript𝐋𝐧𝐞𝐰subscript𝐧subscript𝐑𝐧𝐞𝐰𝑒𝑥𝐸𝑢𝑙𝑒𝑟_𝑠𝑚𝑜𝑙𝑢𝑐𝑜𝑤𝑠𝑘𝑖subscript𝐧𝐋subscript𝐧𝐑𝐾(\mathbf{n_{L_{new}}},\mathbf{n_{R_{new}}})=exEuler\_smoluchowski\left(\mathbf%{n_{L}},\mathbf{n_{R}},K\right)( bold_n start_POSTSUBSCRIPT bold_L start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_n start_POSTSUBSCRIPT bold_R start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = italic_e italic_x italic_E italic_u italic_l italic_e italic_r _ italic_s italic_m italic_o italic_l italic_u italic_c italic_h italic_o italic_w italic_s italic_k italic_i ( bold_n start_POSTSUBSCRIPT bold_L end_POSTSUBSCRIPT , bold_n start_POSTSUBSCRIPT bold_R end_POSTSUBSCRIPT , italic_K ) function (see point 2 below)

    3. (c)

      update arrays 𝐧𝐋=𝐧𝐋𝐧𝐞𝐰subscript𝐧𝐋subscript𝐧subscript𝐋𝐧𝐞𝐰\mathbf{n_{L}}=\mathbf{n_{L_{new}}}bold_n start_POSTSUBSCRIPT bold_L end_POSTSUBSCRIPT = bold_n start_POSTSUBSCRIPT bold_L start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝐧𝐑=𝐧𝐑𝐧𝐞𝐰subscript𝐧𝐑subscript𝐧subscript𝐑𝐧𝐞𝐰\mathbf{n_{R}}=\mathbf{n_{R_{new}}}bold_n start_POSTSUBSCRIPT bold_R end_POSTSUBSCRIPT = bold_n start_POSTSUBSCRIPT bold_R start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Calculate the total average length 𝐥𝐭𝐨𝐭𝐚𝐥subscript𝐥𝐭𝐨𝐭𝐚𝐥\mathbf{l_{total}}bold_l start_POSTSUBSCRIPT bold_total end_POSTSUBSCRIPT as

      𝐥𝐭𝐨𝐭𝐚𝐥(𝐭)=𝐧𝐋𝐧𝐞𝐰𝐋+𝐧𝐑𝐧𝐞𝐰𝐋iNmnLnewi+iNmnRnewisubscript𝐥𝐭𝐨𝐭𝐚𝐥𝐭subscript𝐧subscript𝐋𝐧𝐞𝐰𝐋subscript𝐧subscript𝐑𝐧𝐞𝐰𝐋superscriptsubscript𝑖subscript𝑁𝑚superscriptsubscript𝑛subscript𝐿𝑛𝑒𝑤𝑖superscriptsubscript𝑖subscript𝑁𝑚superscriptsubscript𝑛subscript𝑅𝑛𝑒𝑤𝑖\mathbf{l_{total}(t)}=\frac{\mathbf{n_{L_{new}}}\cdot\mathbf{L}+\mathbf{n_{R_{%new}}}\cdot\mathbf{L}}{\sum_{i}^{N_{m}}{n_{L_{new}}^{i}}+\sum_{i}^{N_{m}}{n_{R%_{new}}^{i}}}bold_l start_POSTSUBSCRIPT bold_total end_POSTSUBSCRIPT ( bold_t ) = divide start_ARG bold_n start_POSTSUBSCRIPT bold_L start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⋅ bold_L + bold_n start_POSTSUBSCRIPT bold_R start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⋅ bold_L end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_n italic_e italic_w end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_n italic_e italic_w end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG
    4. (d)

      exit for loop and parse 𝐥𝐭𝐨𝐭𝐚𝐥(𝐭)subscript𝐥𝐭𝐨𝐭𝐚𝐥𝐭\mathbf{l_{total}(t)}bold_l start_POSTSUBSCRIPT bold_total end_POSTSUBSCRIPT ( bold_t ) to ydata𝑦𝑑𝑎𝑡𝑎ydataitalic_y italic_d italic_a italic_t italic_a

  2. 2.

    The exEuler_smoluchowski function takes as input the initial number densities of linear and ring chains and the reaction rates 𝐧𝐋,𝐧𝐑,K=(κ1,κ0)subscript𝐧𝐋subscript𝐧𝐑𝐾subscript𝜅1subscript𝜅0\mathbf{n_{L}},\mathbf{n_{R}},K=(\kappa_{1},\kappa_{0})bold_n start_POSTSUBSCRIPT bold_L end_POSTSUBSCRIPT , bold_n start_POSTSUBSCRIPT bold_R end_POSTSUBSCRIPT , italic_K = ( italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ). Based on the given rates K, it outputs the final number density arrays 𝐧𝐋𝐧𝐞𝐰,𝐧𝐑𝐧𝐞𝐰subscript𝐧subscript𝐋𝐧𝐞𝐰subscript𝐧subscript𝐑𝐧𝐞𝐰\mathbf{n_{L_{new}}},\mathbf{n_{R_{new}}}bold_n start_POSTSUBSCRIPT bold_L start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_n start_POSTSUBSCRIPT bold_R start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT, after the reactions have taken place. When this function is called, the number density of linear and ring chains of each population are updated according to Eq.(5). The monomer, dimer, and so on populations are increased according to the first two terms of Eq.(5) while the number of them that is converted into rings is subtracted by the 𝐧𝐋𝐧𝐞𝐰subscript𝐧subscript𝐋𝐧𝐞𝐰\mathbf{n_{L_{new}}}bold_n start_POSTSUBSCRIPT bold_L start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT and added to the 𝐧𝐑𝐧𝐞𝐰subscript𝐧subscript𝐑𝐧𝐞𝐰\mathbf{n_{R_{new}}}bold_n start_POSTSUBSCRIPT bold_R start_POSTSUBSCRIPT bold_new end_POSTSUBSCRIPT end_POSTSUBSCRIPT array.
    In the first two terms of Eq.(5a) the rate k1(i,j)subscript𝑘1𝑖𝑗k_{1}(i,j)italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_i , italic_j ) is not a scalar quantity by rather a matrix that follows the relation Eq.(8). The extracted coefficient against which the fitting is optimised is the scalar κ1subscript𝜅1\kappa_{1}italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Similarly, for the sink term of Eq.(5a)-(5b), the equation k0(l)=κ0l4νsubscript𝑘0𝑙subscript𝜅0superscript𝑙4𝜈k_{0}(l)=\kappa_{0}l^{-4\nu}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_l ) = italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_l start_POSTSUPERSCRIPT - 4 italic_ν end_POSTSUPERSCRIPT is used and the fitting coefficient exported is the scalar κ0subscript𝜅0\kappa_{0}italic_κ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

The coefficients K𝐾Kitalic_K are updated iteratively by the lsqcurvefit algorithm to best fit the data. Once the optimum values are obtained the algorithm terminates.

References

  • RubinsteinandColby [2003]M.RubinsteinandH.R.Colby,Polymer Physics(Oxford University Press,2003).
  • OliynykandChurch [2022]R.T.OliynykandG.M.Church,Communications biology5 (2022).
  • Albertsetal. [2014]B.Alberts, A.Johnson,J.Lewis, D.Morgan,andM.Raff,Molecular Biology of the Cell(Taylor& Francis,2014)p.1464.
  • Flory [1936]P.J.Flory,Journalof the American Chemical Society58,1877 (1936).
  • CatesandCandau [2001]M.E.CatesandS.J.Candau,EPL55,887 (2001).
  • Vafabakhsh Reza, Ha [2012]T.Vafabakhsh Reza, Ha,Science337,1097 (2012).
  • Zhouetal. [2012]H.Zhou, J.Woo, A.M.co*k, M.Wang, B.D.Olsen,andJ.A.Johnson,Proc. Natl. Acad. Sci USA109,19119 (2012).
  • JacobsonandStockmayer [1950]H.JacobsonandW.H.Stockmayer,The Journal of Chemical Physics18,1600 (1950).
  • FloryandSemlyen [1966]P.J.FloryandJ.A.Semlyen,Journal of the American Chemical Society88,3209 (1966).
  • SuematsuandOkamoto [1992]K.SuematsuandT.Okamoto,Colloid & Polymer Science270,421 (1992).
  • ChenandDormidontova [2004]C.C.ChenandE.E.Dormidontova,Macromolecules37,3905 (2004).
  • ErcolaniandStefano [2008]G.ErcolaniandD.Stefano,Journal of Physical Chemistry B112,4662 (2008).
  • Madeleine-Perdrillatetal. [2014]C.Madeleine-Perdrillat, F.Delor-Jestin,andP.De Sainte Claire,Journal of Physical Chemistry B118,330 (2014).
  • Di StefanoandMandolini [2019]S.DiStefanoandL.Mandolini,Physical Chemistry Chemical Physics21,955 (2019).
  • Kricheldorfetal. [2020]H.R.Kricheldorf, S.M.Weidner,andF.Scheliga,Polymer Chemistry11,2595 (2020).
  • LangandKumar [2021]M.LangandK.S.Kumar,Macromolecules54,7021(2021).
  • Kricheldorfetal. [2022]H.R.Kricheldorf, S.M.Weidner,andJ.Falkenhagen,Polymer Chemistry13,1177 (2022).
  • Smoluchowski [1918]M.v.Smoluchowski,Zeitschrift für physikalische Chemie92,129 (1918).
  • Ziff [1980]R.M.Ziff,Journalof Statistical Physics23,241 (1980).
  • ShimadaandYamakawa [1984]J.ShimadaandH.Yamakawa,Macromolecules17,689(1984).
  • KremerandGrest [1990]K.KremerandG.S.Grest,TheJournal of Chemical Physics92,5057 (1990).
  • Plimpton [1995]S.Plimpton,J.Comp. Phys.117,1(1995).
  • Garciaetal. [1987]A.L.Garcia, C.VanDenBroeck, M.Aertsens,andR.Serneels,Physica A143,535(1987).
  • Liffman [1992]K.Liffman,J.Comput. Phys.100,116(1992).
  • Kruisetal. [2000]F.E.Kruis, A.Maisels,andH.Fissan,AIChE J.46,1735 (2000).
  • Tranetal. [2023]Q.D.Tran, V.Sorichetti,G.Pehau-Arnaudet,M.Lenz,andC.Leduc,Physical Review X13,011014 (2023).
  • Robertsonetal. [2006]R.M.Robertson, S.Laib,andD.E.Smith,Proc. Natl. Acad. Sci. USA103,7310 (2006).
  • TaylorandHagerman [1990]W.H.TaylorandP.J.Hagerman,Journal of Molecular Biology212,363 (1990).
  • BatesandMaxwell [2005]A.BatesandA.Maxwell,DNA topology(OxfordUniversity Press,2005).
  • Crockeretal. [2000]J.C.Crocker, M.T.Valentine, E.R.Weeks, T.Gisler,P.D.Kaplan, A.G.Yodh,andD.A.Weitz,Phys. Rev. Lett.85,888 (2000).
  • HansenandMcDonald [2013]J.-P.HansenandI.R.McDonald,Theory of simpleliquids: with applications to soft matter(Academic press,2013).
  • De Gennes [1982a]P.G.De Gennes,The Journal of Chemical Physics76,3316 (1982a).
  • Grosbergetal. [1982]A.Y.Grosberg, P.G.Khalatur,andA.R.Khokhlov,DieMakromolekulare Chemie, Rapid Communications3,709 (1982).
  • DoiandEdwards [1988]M.DoiandS.Edwards,The theory of polymer dynamics(Oxford University Press,1988).
  • Rosaetal. [2010]A.Rosa, N.B.Becker,andR.Everaers,Biophys. J.98,2410 (2010).
  • RosaandEveraers [2008]A.RosaandR.Everaers,PLoS computational biology4,1 (2008).
  • V. SorichettiandLenz [2023]V.SorichettiandM.Lenz,Phys. Rev. Lett.131,228401 (2023).
  • van DongenandErnst [1984]P.G.J.van DongenandM.H.Ernst,J. Stat. Phys.37,301 (1984).
  • VanDongenandErnst [1985]P.VanDongenandM.Ernst,Physical review letters54,1396 (1985).
  • @doiandEdwards [1988]M.@doiandS.Edwards,The Theory of Polymer Dynamics(1988).
  • De Gennes [1982b]P.G.De Gennes,The Journal of Chemical Physics76,3322 (1982b).
  • MeakinandErnst [1988]P.MeakinandM.H.Ernst,Phys.Rev. Lett.60,2503(1988).
  • Masonetal. [1997]T.G.Mason, K.Ganesan,J.H.Van Zanten,D.Wirtz,andS.C.Kuo,Physical Review Letters79,3282 (1997).
  • Zhuetal. [2008]X.Zhu, B.Kundukad,andJ.R.Van Der Maarel,J. Chem. Phys.129,1 (2008).
  • Krajinaetal. [2017]B.A.Krajina, C.Tropini,A.Zhu, P.Digiacomo, J.L.Sonnenburg, S.C.Heilshorn,andA.J.Spakowitz,ACS Central Science3,1294 (2017).
  • TanoguchiandMurayama [2018]M.TanoguchiandY.Murayama,AIPAdvances8 (2018).
  • Smreketal. [2021]J.Smrek, J.Garamella,R.Robertson-Anderson,andD.Michieletto,Science Advances7,1 (2021).
  • Michielettoetal. [2022]D.Michieletto, P.Neill,S.Weir, D.Evans, N.Crist, V.A.Martinez,andR.M.Robertson-Anderson,Nature Communications13 (2022).
  • Fosadoetal. [2023]Y.A.Fosado, J.Howard,S.Weir, A.Noy, M.C.Leake,andD.Michieletto,Physical Review Letters130,58203 (2023).
  • Roovers [1988]J.Roovers,Macromolecules21,1517 (1988).
  • Kapnistosetal. [2008]M.Kapnistos, M.Lang,D.Vlassopoulos, W.Pyckhout-Hintzen, D.Richter, D.Cho, T.Chang,andM.Rubinstein,Nature materials7,997 (2008).
  • Halversonetal. [2012]J.D.Halverson, G.S.Grest, A.Y.Grosberg,andK.Kremer,Phys. Rev. Lett.108,038301 (2012).
  • Zhouetal. [2021]Y.Zhou, C.D.Young,M.Lee, S.Banik, D.Kong, G.B.McKenna, R.M.Robertson-Anderson, C.E.Sing,andC.M.Schroeder,Journal of Rheology65,729 (2021).
  • Parisietal. [2020]D.Parisi, J.Ahn,T.Chang, D.Vlassopoulos,andM.Rubinstein,Macromolecules53,1685 (2020).
  • Michielettoetal. [2014]D.Michieletto, D.Marenduzzo, E.Orlandini, G.P.Alexander,andM.S.Turner,Soft Matter10,5936 (2014).
  • Sohetal. [2019]B.W.Soh, A.R.Klotz,R.M.Robertson-Anderson,andP.S.Doyle,Physical Review Letters123,1 (2019).
  • Annaluruetal. [2014]N.Annaluru, H.Muller,L.A.Mitchell, S.Ramalingam, G.Stracquadanio, S.M.Richardson, J.S.Dymond, Z.Kuang, L.Z.Scheifele, E.M.Cooper, Y.Cai, K.Zeller,N.Agmon,andJ.S.Han,Science (New York, N.Y.)344,55 (2014),arXiv:24674868.
  • Del Grossoetal. [2022]E.DelGrosso, E.Franco,L.J.Prins,andF.Ricci,Nature Chemistry14,600 (2022).
  • HeinenandWalther [2019]L.HeinenandA.Walther,Science Advances5,32(2019).
Runaway Transition in Irreversible Polymer Condensation with cyclisation (2024)

References

Top Articles
Latest Posts
Article information

Author: Virgilio Hermann JD

Last Updated:

Views: 5855

Rating: 4 / 5 (61 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Virgilio Hermann JD

Birthday: 1997-12-21

Address: 6946 Schoen Cove, Sipesshire, MO 55944

Phone: +3763365785260

Job: Accounting Engineer

Hobby: Web surfing, Rafting, Dowsing, Stand-up comedy, Ghost hunting, Swimming, Amateur radio

Introduction: My name is Virgilio Hermann JD, I am a fine, gifted, beautiful, encouraging, kind, talented, zealous person who loves writing and wants to share my knowledge and understanding with you.